HW2: Nonlinear Classifiers
CSCI 662: Fall 2022

Copyright Jonathan May and Elan Markowitz. No part of this assignment including any
source code, in either original or modified form, may be shared or republished.

out: Sep 26, 2022
due: Oct 12, 2022

This assignment is about using the infrastructure you built in HW1, now applying a non-linear classifier
(specifically, a one-layer feed-forward network) to the problem. The key is that we want you to implement
the model by hand, without using neural network or machine learning frameworks. Here is a nice post on
why such exercise of implementing your own forward and backward passes is useful. After you do this, you
should compare your implementation to a PyTorch implementation (that you should also write) and to the
results you got in HW1.

WARNING: While some of this writeup will look similar to the HW1 write up, there are important
differences throughout so it is a good idea to read thoroughly.

WARNING: Expect to spend way more time on this assignment than you did on assignment 1. It has a
lot more room for mistakes and bugs. This is, of course, not to scare you; it’s a fun assignment, and we are
here to help. It’s so you plan accordingly.

Code To Write

1. Write a trainer for a feed-forward neural network, using python 3. The trainer should be called
train.py. It should display its invocation and brief help when invoked as python3 train.py -h. You
should use the argparse package for ease here. The program should take the following options:

e -u <integer> to specify the number of hidden units.
e -1 <float> to specify the learning rate.

e —f <integer> to specify the number of words to read per data item, i.e., the max sequence length
of each input.

e -b <integer> to specify the minibatch size.
e —e <integer> to specify the number of epochs to train for.
e -E <embeddingfile> to specify the word embedding file to be read.

e —i <inputfile> to specify a training file to be read. Training files will be in the form <text>TAB<label>,
i.e., a line of text (that does not contain a tab), a tab, and a label.

e -0 <modelfile> to specify a model file to be written.

It can take other options too such as specifying additional hyperparameters, a dev set so that held-out
loss can be displayed, etc.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

2.

Write a classifier that takes in the feed-forward model and unlabeled data set and labels it. The
classifier should be called classify.py. It should display its invocation and brief help when invoked
as python3 classify.py -h. The program should take the following options:

e -m <modelfile> to specify the trained model file to read, i.e., the output of train.py.

e —i <inputfile> to specify a test file to be read. Test files will be in the form <text>, i.e., a line
of text that does not contain a tab. For each line, a label should be predicted.

e -0 <outfile> to specify an output file to be written. The output file should contain one label
for each line in the input file.

After you've written your own backprop/feed forward, you should write your own PyTorch implemen-
tation of the same network. You should not use any other previously written trainer/classifier code
except code that you wrote for HW1. Name these train-torch.py and classify-torch.py. The
options should be at least the same as those used in train.py and classify.py.

More details

To make things simple, here is the specific architecture you should implement:

Retrieve 50-dimensional GloVe English vectors, 300-dimensional fastText Odiya (spelled ‘oriya’ at
fasttext — same thing!) vectors or 100-dimensional ‘ufvytar’ vectors of uncertain origin for each of
the maximum f words (as specified by option -f above) in the input you will consider to make
a 50f-dim (or 300f-dim in the case of Odiya) input vector z: find the file glove.6B.50d.txt,
fasttext.wiki.300d.vec, and ufvytar.100d.txt available in your workspace. If you need padding
words (i.e., your input is too short), use a vector of zeroes. If your word is not found, you can use a
mean of all the vectors in the embedding file; as a convenience, these have been added to vocareum
as unk-eng.vec, unk-odiya.vec, and unk-ufvytar.vec; append it to the embedding file. The index
for this word is “UNK” (all caps). Note that all ‘regular’ words in this file are lowercase, so
adjust your input data accordingly. You won’t adjust these embeddings while learning.

This step is essentially an implementation of the getFeatures function of the Features base class
from HW1; this is the featurization we use to feed the input in the network.

Let wy and by be the input-to-hidden layer (50f x u)-dim (or 300f x u in the case of odiya) weight
matrix and u-dim bias vector, respectively. The hidden vector, h, is relu(x - wa + ba) where relu is
the rectified linear unit, i.e., relu(x) = when x > 0 and relu(z) = 0 otherwise.

Assuming there are d output classes, let wp and bp be the hidden-to-output layer (u X d)-dim weight
matrix and d-dim bias vector, respectively.

The loss, L, is — Zgzl 1[y = c]log(softmaz(h - wp + bg).), i.e., the cross entropy of the softmax of
the output logits relative to the ground truth class label. Another way to write this is to define the
logits, ¢, as £ = h-wp + bp; then L = — 2521 1y = c]log(softmax(¥).)

You don’t need to implement regularizers (though you can if you want to; it would be in the extra mile
category).

You’ve probably noticed that a fixed-length feed-forward approach is not a great way to classify some
of this data (e.g. products). That’s ok, we just want a comparison of your implementation and a
pytorch implementation. But if you wanted to explore ways to use a feed forward model, you could
try variants of input. For example, the f words you input could be just verbs. Or they could be the
most frequently occurring words in the input. Or the terms with the highest ¢f * idf. Or other ideas
you come up with.

Some useful notes on calculating gradients are here (they require concentration to read through):
http://www.cs.columbia.edu/~mcollins/cs4705-spring2019/notes/f£2.pdf.

http://www.cs.columbia.edu/~mcollins/cs4705-spring2019/notes/ff2.pdf

Coding Requirements

e The classifier should be able to handle words that haven’t been seen before.

e The trainer/classifier should be multi-class, not binary, and should generate actual class labels. Assume
all classes are seen in training and save the label info in the model file.

e In your writeup, discuss different values of hidden layer size, number of words allowed per item, learning
rate, and number of epochs you tried and the different scores you got on your own internal test set
and on the blind set (on Vocareum). Compare your results to the results you got in HW1. Note
that due to being feed forward, you will probably only use a small subset of the input
data in many of the data sets; you can increase the number of words you read in but
eventually may run into memory issues. A different neural architecture (e.g. CNN, RNN) will
probably be better (this is outside of the scope of this assignment but reasonable for extra mile, as are
other creative approaches to handling input).

e Submit train.py, classify.py, train-torch.py, torch-classify.py, any other code needed, and
[questions,torch.questions,products,torch.products,4dim,torch.4dim,odiya,torch.odiyal .model
as discussed below.

e Make sure the Vocareum auto-scoring script runs and gives reasonable results. You may also try
running alternate models interactively on Vocareum. Some larger models may not run but baselines
definitely should! We’d like to try these out so please provide instructions for trying the models you
most want to demonstrate by creating a usable README file.

e Once you are done with your primary models, compare your implementations to ‘off the shelf’ imple-
mentations. Are there any differences in speed and/or performance? Can you determine what accounts
for these differences?

Coding Recommendations

e When writing your code you should seed the random number generator so your results do not change
between executions. When you are ready to run for real, don’t seed the generator, so the results will
be different every time (you can try running your model several times to get an idea of the variance).

e One design you might consider and choose is programming parameters and the nonlinearities of your
feed-forward neural network as concrete implementations of a base class with forward and backward
abstract methods. In fact, this is what happens way below under the hood of PyTorch.

e Implementing a neural network by hand is tricky! You should run tests to make sure your model is
correct. One test you can run is to only allow one kind of gradient update at a time (e.g. just the bias
on the hidden layer). If things are implemented correctly your loss on training should still improve on
every epoch if your gradients are correct (it should just do so less well than with the entire, correctly
implemented network). Another test you can run is to do gradient checking; this is done by calculating,
for one of the functions f you want to check the gradient of, %ﬁfﬁ_s) for several random values
of x and a specified small number €. Compare this number to the gradient calculated for those files by
your gradient equations. Per calculus theory, your manual gradient should vary from your calculated
gradient by no more than €2.

e For general approaches to training a classifier for multiple tasks and evaluating a classifier see the tips
from homework 1.

e If you're not familiar with PyTorch, here is a good place to start and look for pointers: Learning
PyTorch with Examples.

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html#learning-pytorch-with-examples

Data

We have provided several different classification tasks (this is the same as in HW1):

e products: Very variable length lines of various kinds of English product reviews that are either positive
(pos) or negative (neg). 32,592 reviews.

e 4dim: English reviews of variable length that are positive or negative and truthful or deceptive (pos.tru,
pos.dec, neg.tru, neg.dec). 1,560 reviews.

e odiya: News headlines written in odiya (or Oriya, or Odia) which is a low-resourced language spoken
in India. They are classified into business, sports and entertainment. 15,200 headlines.

e questions: Questions to be classified into 6 categories: abbreviation, entity, description, human,
location, and numeric value. There are 5,452 questions provided. The language of the questions is
uncertain; before undertaking the arduous hand-transcription of this data, we noticed a faded label
that said “ufvytar” on the library archive box. But there’s something mysterious about this data...

Data is on Vocareum; when you submit, if you provide trained model files called [questions, torch.questions,
products, torch.products, 4dim, torch.4dim, odiya, torch.odiya].model, we will test your code
on hidden files and return a score. If this score differs greatly from your expectation you may a) be overfit,
or b) have some design flaw in your code structure (e.g. hardcoded assumptions).

Your Report
Your report should at a minimum:
e Show the specific equations for the gradient updates you implemented.
e Discuss differences between your from-scratch implementation and the PyTorch implementation.

e Discuss differences in your feed-forward classifier(s) on the different data sets and how the classifiers
built in this homework compare to the performance of the classifiers from the last homework on the
same data sets.

e Where relevant, show learning rates, discuss overfitting and loss convergence. Use graphs and tables
appropriately, not superfluously. This means the graphs/tables should emphasize the message you are
delivering, not simply be in place without thinking about why you are using that particular medium
to convey an idea.

Use the ACL style files : https://github.com/acl-org/acl-style-files

Your report should be at least two pages long, including references, and not more than four pages long, not
including references (i.e. you can have up to four pages of text if you need to). Just like a conference paper
or journal article it should contain an abstract, introduction, experimental results, and conclusion sections
(as well as other sections as deemed necessary). Unlike a conference paper/journal article, a complete related
works section is not obligatory (but you may include it if it is relevant to what you do).

Grading
Grading will be roughly broken down as follows:

e about 50% — did you clearly communicate your description of what you implemented, how you im-
plemented it, what your experiments were, and what conclusions you drew from them? This includes
appropriate use of graphics and tables where warranted that clearly explain your point. This also
includes well written explanations that tell a compelling story. Grammar and syntax are a small part
of this (maybe 5% of the grade, so 10% of this section) but much more important is the narrative you
tell. Also a part of this is that you clearly acknowledged your sources and influences with appropriate
bibliography and, where relevant, cited influencing prior work.

https://github.com/acl-org/acl-style-files

about 20% — is your code correct? Did you implement what was asked for, and did you do it correctly?

about 20% — is your code well-written, documented, and robust? Will it run from a different directory
than the one you ran it in? Does it rely on hard-codes? Is it commented and structured such that we
can read it and understand what you are doing?

about 10% — did you go the extra mile? Did you push beyond what was asked for in the assignment,
trying (well-justified) new models, features, or approaches? Did you use motivation (and document
appropriately) from another researcher trying the same problem or from an unrelated but transferrable
other paper?

‘Extra Mile’ ideas

This is not meant to be comprehensive and you do not have to do any of the things here (nor should you do
all of them). But an ‘extra mile’ component is 10% of your grade.

Add multiple hidden layers to your from-scratch implementation to create a deeper neural network (you
can do this for your PyTorch version too but you’ll get more credit for doing it on the from-scratch
implementation).

Try different batch sizes to speed up training.

Consider alternate ways to deal with the varying input lengths—different model architecture, creative
and reasonable input approaches, etc. Justify your choices!

Try different activation functions for the hidden layer and see how they change the performance.

Implement a dropout layer (again, more credit if done in from-scratch than in PyTorch) and see if it
helps reduce overfitting.

Experiment with different weight initialization strategies and investigate if they help the model during
the early phase of training.

Implement adaptive learning rates and momentum to make the model converge faster.

Dig into the ACL archives and find ideas for other architectures or approaches; try them out, analyze
performance.

Rules

This is an individual assignment. You may not work in teams or collaborate with other students. You
must be the sole author of 100% of the code you turn in.

Depending on need and class interest, we may collaborate in class or publicly on Piazza if you get
stuck; this kind of collaboration is okay.

You may not look for coded solutions on the web, or use code you find online or anywhere else. You
can and are encouraged to read material beyond what you have been given in class (see above) but
should not copy code.

You may not download the data from any source other than the files provided on Vocareum, and you
may not attempt to locate the test data on the web or anywhere else.

For this assignment you may not use other external data that is not the training/test data provided
(you may of course use the vectors we have provided). THIS IS A DIFFERENCE FROM THE
PREVIOUS ASSIGNMENT.

You may use packages in the Python Standard Library (including numpy) for your original implemen-
tation. You may not use any other packages (e.g. scikit-learn, keras, tensorflow, or other machine
learning libraries). For your comparison implementation you should use PyTorch.

You may use external resources to learn basic functions of Python (such as reading and writing files,
handling text strings, and basic math), but the extraction and computation of model parameters, as
well as the use of these parameters for classification, must be your own work.

Failure to follow the above rules is considered a violation of academic integrity, and is grounds for
failure of the assignment, or in serious cases failure of the course.

We use plagiarism detection software to identify similarities between student assignments, and between
student assignments and known solutions on the web. Any attempt to fool plagiarism detection, for
example the modification of code to reduce its similarity to the source, will result in an automatic
failing grade for the course.

If you have questions about what is and isn’t allowed, post them to Piazza!

