Non-Linear Models

Jonathan May
September 7, 2022(Prepared for Fall 2022)

Discussion Question: What have you learned (elsewhere) about best practices
for determining optimal hyperparameters for a new data set, task, model, etc?

1 Why Nonlinear Models?

The linear models we introduced appear to be very flexible, however they are limited in what
they can capture. Specifically, because the equation 6 - f(x,y) is linear, classification cannot
be successful if the data points, when plotted in their feature space, cannot be divided by
a line (or, more generally, a hyperplane). The classic example of this is the zor problem.
Consider this data:

fil faly
1 1]|a
1101|Db
0]11|b
010]a
1% "R
<2 0.5 :
0 s ! t
0 0.5 1

S

This 2-label data set is class 1 iff binary features f; and fy are both on or both off and
is class —1 otherwise. Try to draw a line that separates the data. It of course can’t be
done. You could of course introduce a new feature XOR(f1, fo) that explicitly captures this
relationship and then the data would be linearly separable. But in general you don’t know
which combinations of features yield separability.

You could try a transformation that makes combinations of the weights. Define weights
w11, Way, by to map from the old feature space to a new feature g; and ws, was, by to map
from the old feature space to a new feature g,, such that

g1 = wit f1 +war fo + by
g2 = Wi f1 + wa fo + by

Let’s use these as the weights:

and

[—1(b1) 1(bo)]

(It’s no accident I set these up as a matrix)
That yields:

g1 | 92 | Y
1]1-11]a
010 |b
010 1|b
111 a
1|m :
s 0 : 1
—1 L ! ol
-1 0 1

g1

It’s still non-separable! This should be no surprise; all a linear transformation can do is
scale, transpose, and rotate the points; it can’t distort them in a way that allows separability.
Consider (cf. 7.3.1 in JM Jan 2022 ed.):

f=wOzr 4 p©® (let’s say the features were from a linear transform too)
g=wWWf 4 pd (the above transformation in compact form)

— W(l)(W(O)x + b(O)) +pM

=WOWO e L WwHpO L pM)

=W+ W' =WOWO® and v = WO +)

Still linear! So we’ll multiply by a non-linear step function:

1.5
1r ——
0.5 :
0 p——o N

—0.5

0 02040608 1
g1 | 92 | Y
110
01]0
010
011

Separable!
1[m |

a
b
b
a

& 051 8

0 0.5 1
(231

The point of nonlinear transformations is to enable recombinations of features. We can
make a linear combination of the new features and apply a nonlinearity to get yet another
recombination. This can be done as many times as needed. What’s nice about this is that
we don’t need to specify complicated features any more — if we choose weights properly and
use enough layers we can capture any combinations of the input data.

1.1 Obtaining the weights

In logistic regression and perceptron we used gradient descent of the loss on training data
to set weights. We can use the same approach here, though the step function, being non-
differentiable, isn’t an appropriate nonlinear activation function, so we’ll use a similarly
shaped function that is differentiable at every point. First let’s define the model and the
loss. Let f,y be the input feature vector of the input! (d x 1) and its label (a string) from a
finite set Y. Let H of dim (v X d) be the weights matrix and by be the bias vector? of dim
(u x 1). The elementwise nonlinear activation function is ¢g(). Thus to get the transformed
vector (or ‘hidden’ features...or even ‘hidden vector’) h:

'For those who are ready to jump to BERT, etc., note that we're still using a fixed set of arbitrarily
defined features.

2When to use a bias term? I don’t know, and I see different formulations do different things. For example,
E ch. 3.1 uses bias in both hidden and output layers, though he hides the bias term in the hidden layer. JM
(Jan 2022) p.140 say “some models don’t include a bias...in the output layer” and follow suit. I will use it
in both places, explicitly.

k = Hf + by
h = g(k)

What are d and v? That’s up to you to some degree. f, in particular, can be any features,
such as the features we used in perceptron and logistic regression, but usually they’re simply
an arbitrary number of uninterpretable features tied to the vocabulary of the input x.> We
could stick with naive Bayes features and say d = |V| (vocabulary size), let’s say 50,000,
with a count of frequency in the text of each word. wu is entirely a design decision. Let’s pick

1000.

1.2 Nonlinear activation functions

What about g?* Before the 90s the logistic sigmoid (often simply called ‘sigmoid’) function
was used:

1 e’
o(x) = =
1+e® er+41
In the 90s and 00s neural network people recommended hyperbolic tangent or ‘tanh’, another
sigmoid function, with a range from -1 to 1:

et — e 2
tanh(z) = ——
Here they are with the inverse of tanh (arctan) thrown in for good measure:®

Common Sigmoid Functions
1.5-

1.0- ﬁ

0.5-
Arctangent

f(x)

0.0- = Hyperbolic tangent

Logistic function
05- Y

-1.0- ———————#”//

50 25 0.0 25 5.0
X

These resembled activation functions in neurons, the biological basis of ANNs. But one
problem with these functions, especially as we started exploring deeper networks (i.e. re-
peated alternations of linear transforms and nonlinear activations) is that they saturate, i.e.
the value goes to the extreme, where the slope is near zero, and then very little learning
takes place. A nonlinear function that is a lot like a linear function but is still nonlinear is
desirable. Enter the Rectified Linear Unit, or ReLLU:

3In other words, they are word embeddings, but we’ll get to that shortly.
4Source: https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-ne
5Pic from https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function

0, ifx<0
ReLU(m):{ @ ifx>0}

-10.0 -75 =50 -2.5 0.0 2.5 5.0 7.5

The gradient of ReLLU is very easy to work with and it turns out this function works very
well in practice. Variants are sometimes used (Leaky ReLU: a small non-zero gradient is
used for negative values; GELU: interpolation with a Gaussian distribution).

1.3 Getting an output label

We now need to convert into the output space, which should be equal in length to Y] (e.g.
for sentiment it could be 2, 3, 5, depending on how the problem is defined. Let’s say 5.). We
can just use a linear transformation for that, getting us the logits. And then we use softmax
again, to get the probability of each output.

Z:Uh+bU

o = softmax(z)

The loss ¢ is again the cross-entropy loss H,% which is defined for one data item (f,y) as

Hey(p,q) == > p('f)loga(y'|f)
y'eY
where the distribution ¢(y'|f) may be represented by o and the true distribution p(y’|f) is
taken to be one-hot at y,” reducing H to —log(o,).
Thus, ¢ ends up being

¢ = —log(oy)

Snot to be confused with matrix H
7Is this realistic? No! But it’s convenient. Sometimes ‘label smoothing’ is used to make this more realistic;
I might mention it.

i.e. the negative log of the probability of the correct answer (denoted o, to note that member
of o corresponding to choice y).

Having calculated ¢, we update each set of parameters (H, by, U, by) by the opposite of
the gradient of ¢ with respect to that variable, i.e:

H « H— \o¢/oH
by < bg — A9(/0by
U+ U—\o(/oU
by « by — \(/0by

where A is a learning rate. Now how are these partials determined? We start at the loss
equation itself and use simple calculus:

¢ = —1log(oy)
0l/do, = —1/o,

Now consider the definition of o, itself; we can use the chain rule and the local derivative
of o, with respect to z, though softmax is a slightly tricky function to take a derivative of:

0l/0z = 0l/Do, x Do, /0z
exp(zy)

2. exp(2i)

To calculate do,/0z we will make use of the derivative rule for quotients:

(f(iv) y = g(@)f(x) — f(x)g(x)
9(x) g(x)?
It is helpful to consider the application of this rule to do,/Jz in two cases: when i = k
and when 7 # k. Remember that even though o, is a scalar, 2 is a vector, so we're calculating
do,/0z; for every member z; of z.

Oy:

> exp(zi) x 0 — exp(zy) exp(z;)
(2 exp(2i))?
exp(zy) exp(z;)
> exp(zi) Do exp(zir)
> exp(zin) exp(z,) — exp(z,)?
900/ 0Ay (5, exp(ea))
_ exp(z,) D exp(z) — exp(z,)
> i exp(2in) > i exp(zir)

= 0y(1 — o)

[aoy/az]#y =

6

Now we can multiply 0¢/0o, = —1/0, with 0o, /0z to get 0(/0z:

oy—1 i=y

0/0z = { (1)

0; otherwise

We next continue on down to find the gradient of ¢ with respect to U and by, which are
actual parameters we want to learn. We use the definition of z in terms of these variables
and what we have previously learned:

00190 = D0/9z x 9z/U
8@/81)(] = 85/82 X aZ/abU

z = Uh"—bU
0z/0U = h
(92/8bU =1

We can simply multiply 0¢/0z, which is the complicated value in Equation 1, by either
h or (the vector) 1, as noted above. Here it’s worth noting that we want to get the shapes
of our gradient matrices right and that we want to deal with batches of training samples
properly.

Imagine that we are updating parameters after seeing one training instance. Then, 9¢/0z
is a (5 x 1) vector. his a (1000 x 1) vector, and we want to update U, which is a (5 x 1000)
matrix. Thus we take 9¢/0z x h' to get the right shape. However note that in general we do
not update after a single training instance; rather there may be some ¢ items in the minibatch.
So in fact 9¢/9z is a (5 x t) matrix and h is a (1000 x d) matrix. 9¢/9zx h™ still yields a (1000
x 5) matrix but it is actually the sum of ¢ individual loss calculations. The point of batch
updating is to take a per-item average. Thus the proper update for U is to subtract (the
learning rate times) M. Similarly, to update by, it is important to actually multiply
0l/0z by a length-5 ones vector, which amounts to summing each dimension of 9¢/0z along
the batch axis, then divide by t.

If you've gotten this far, the rest should be straight-forward. We will need 9¢/0h, which
is of course 0¢/0z x 0z/0h; the former term is in Equation 1 and is (5 x ¢), the latter is
simply U, which is (5 x 1000). We calculate as 9¢/9z x UT to get a (1000 x t) result for
0l/0h.

We can now move on to the hidden layer; let’s assume g is ReLu.

0t/ 0k = OL/Oh x Oh Ok
h = ReLU(k)

>
OOk — {1 k=20

0 otherwise

O0/OH = 00/dk x Ok /OH

k=aH + by
ok/OH = f
Ok /Oby = 1

We update H, a (1000 x 50,000) matrix with -0¢/0H; The dimensions of 0¢/0k are

(1000 x t), the dimensions of 0k/OH are (50,000 x t); thus we form 0¢/0H = w.
Similarly we update by, a (1000 x 1) vector with —0¢/0by; we multiply 0¢/0k by a 1000-
length ones vector which sums its values along the t-sized axis, then divide by ¢.

1.4 Word embeddings

Previously we let f, with dimension |V|, represent a bag of words and be the input features.
This does not allow the relative positions of the words in the input to be specified. A more
common approach is to instead use a fixed sequence of some n (let’s say 20) words, and
represent each word in the vocabulary by an e-dimensional vector. This fits in nicely with
our set of equations. Let E be a |V| x e matrix (often called an embedding table). Informally,
we assign an index for each word in the vocabulary from 1 to |V/|. Let the input be ji, ja, ...jin
where each j; is a one-hot vector, i.e. if j; represents ‘salamander’ and the index for that
word is 48, then j; = 0,...,0,1,0,...,0 consisting of 47 0s, a 1, and then 49,952 0s. Then we
redefine x as Eji; Ejo; ... ; EJ,, a ne-length vector. Ej; can be thought of as an ‘embedding’
of ‘salamander’ in e << |V|-space. Backpropagation is extended to update E as well®. We’ll
next look at why these embeddings are interesting in their own right.

8There is generally no bias term for the word embeddings

8

