POS and HMM

Jonathan May
September 23, 2022(Prepared for Fall 2022)

0.1 What are Part-of-Speech (POS) Tags?

Syntactic labels of words: This/DET is/VB a/DET simple/ADJ sentence/NOUN. These
abstract away from the core word meanings. Sequences (i.e. legal ordering) are mostly
(though not entirely) dependent only on the labels, not by the words themselves.

e Open class words (”content words”)

— nouns, verbs, adjectives, adverbs
— mostly content-bearing. refer to objects, actions, features in the world

— open class = there is no limit to what they are or can describe so new ones are
added all the time (email, website, defenestrate)

e Closed class words (”function words”)

— pronouns, determiners, prepositions, connectives
— there are a limited number of these

— mostly functional: to tie the concepts of a sentence together

How many? It depends. Some kind of annotation standard is needed to decide, e.g.,
should proper and common nouns be separated? Should singular or plural nouns? Presen-
t/past/main/aux verbs?

Penn treebank: fairly detailed set of tags (45 of them) used frequently along with parsing
(particularly constituent parsing). Some weird quibbles: why does 'to’ get its own tag?

Tag Description Example Tag Description Example
CcC coordin. conjunction and, but, or SYM symbol +.%, &
CD cardinal number one, two TO “to” to

DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB verb base form eat

FW foreign word mea culpa VBD verb past tense ate

IN preposition/sub-conj of, in, by VBG verb gerund eating

1 adjective yellow VBN verb past participle eaten

JIR adj., comparative bigger VBP verbnon-3sg pres eat

IS adj., superlative wildest VBZ verb 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that
MD modal can, should WP wh-pronoun what, who
NN noun, sing. or mass [llama WP$ possessive wh- whose
NNS noun, plural llamas WRB wh-adverb how, where
NNP propernoun, sing. IBM $ dollar sign $

NNPS proper noun, plural ~ Carolinas # pound sign #

PDT predeterminer all, both - left quote for*
POS possessive ending s right quote Tor”
PRP personal pronoun I, you, he (left parenthesis L({.<
PRP$ possessive pronoun your, one's) right parenthesis |,), }, >
RB adverb quickly, never comma

RBR adverb, comparative faster sentence-final punc . ! ?

RBS adverb, superlative fastest mid-sentence punc : ;... —-
RP particle up, off

J&M Fig 5.6: Penn Treebank POS tags

Morphologically rich languages will often have ‘morphosyntactic’ tags = detailed break-
down of how the word parts combine, such as ‘Noun+A3sg+P2sg+Nom’ with possibly thou-
sands of possibilities

Universal dependencies: 17 tags to try to catch phenomena that are distinct across all
languages (there is also a 12 tag variant):

0.2

ADJ adjective NUM numeral
ADP adposition PART particle
ADV adverb PRON pronoun
AUX auxiliary PROPN proper noun
CCONJ coordinating conjunction PUNCT punctuation
DET determiner SCONJ subordinating conjunction
INTJ interjection SYM symbol
NOUN noun VERB verb
X other

Why is it hard?

Why is it always hard? Ambiguity.
glass of water/NOUN vs

lie/VERB down

Vs

wind/VERB down VS

time flies
NOUN

VERB NOUN
ADJ NOUN

like

VERB

What knowledge do we need?

water/VERB the plants

tell a lie/NOUN

a mighty wind/NOUN (note these last are homographs)

an

arrow

VERB MODAL DET NOUN

1) A component deciding based on the word itself (some words only nouns, like arrow,
some words ambiguous, a priori tag probability)

2) A component deciding based on the tags of surrounding words (a sequence of two
determiners is rare, as is two base form verbs. Determiner almost always followed by adjective
or nouns

Could we just put this into a linear model, predicting one tag at a time?

0.3 Why do we care?

This is the first step toward full-sentence syntax (structure trees). POS tags can also be used
as input to tasks people do care about (sentiment analysis, word sense disambiguation).

In neural network land, could these be inferred automatically as ‘features’? With suffi-
cient data, it seems they can, yes. But often there isn’t enough data, and linguistic intuition
guides the search space, so that we can start off with prior knowledge of meaningful rela-
tionships between words.

More importantly, beyond text classification, this is a sequence labeling task, and the
approaches we learn here, are specifically helpful for this and other sequence labeling tasks,
of which here are two:

e Named Entity Recognition (NER): label words as beginning to persons (PER), orga-
nizations (ORG), locations (LOC), or none of the above: Barack/PER Obama/PER
spoke/N from/N the/N White/LOC House/LOC today/N ./N

e Information field segmentation: Given specific text type (e.g. classified ad), find which
words belong to which ”fields” for db creation (price/size/location, author/title/year):
3BR/SIZE apt/TYPE in/N West/LOC Adams/LOC ,/N near/LOC USC/LOC ./N
Bright/FEAT /N well/FEAT maintained/FEAT ...

Key features of sequence labeling: Correct label depends on
e item to be labeled (NER: Smith is probably a person. POS: chair is probably a noun)

e labels of surrounding items (NER: if following word is an organization (e.g. Corp.),
then this word is more likely to be an organization. POS: if preceding word is a modal
verb (e.g. will), then this word is more likely to be a verb)

The Hidden Markov Model (HMM) combines these sources probabilistically.

0.4 Bayes’ Law and Assumptions again

For word sequence W = wyq, ..., w, we want the most likely tag sequence T' = tq, ..., t,, i.e.

argmax, P(T|W) = argmax, P(W|T)P(T)

Then we make some simplifying assumptions:

1)P(W|T) :P(wl,...,wn|t1,...,tn) :P(w1|w2,...,wn,tl,...,tn)P(w2|...)...P(wn|t1,...

3

~ P(wi|ty) P(wsltz) . .. P(wnlt,)

In other words we assume independence of all words and tags except w; and t;.

9 P(T) = P(t1,....tn) = P(taltucts- s t1)P(tniltuss ... 1)

~ P(toltn 1) P(tn1ltns) ... P(ts|t1) P(t1)

In other words we assume a tag is conditioned only on the previous tag. This is called
the ‘Markov’ assumption.

We call P(W|T) the emission probability and P(T) the transition probability. A plate
diagram helps (this is fig. 7.2 of Eisenstein):

Q@@
©6 ©

Small implementation note: there’s no specific conditioning on the beginning or ending
of a sentence, but it does seem like a good kind of probability to have. So in practice we can
imagine sentences all beginning with, e.g. ‘BOS’ and ending with ‘EOS’. Note the probability
of the first tag is P(¢;) with no conditioning, but since the first tag is always the same (and
the same word is always drawn from it) we don’t need to include those probabilities. It is,
however, helpful to know P(t5|BOS) and to include a proper draw for ending, i.e. P(EOS|t,).

These probabilities are generally learned empirically and then smoothed (it’s much more
important to smooth the emission probabilities...why?). Here are tables of empirically
learned probabilities (these are from Jurafsky and Martin):

ti—1\t; | NNP MD VB JJ NN | ...
<s> | 0.2767 | 0.0006 | 0.0031 | 0.0453 | 0.0449 | ... t\w; Janet will back the R
NNP || 0.3777 | 0.0110 | 0.0009 | 0.0084 | 0.0584 | . .. NNP || 0.000032 0 0 0.000048 | . ..
MD | 0.0008 | 0.0002 | 0.7968 | 0.0005 | 0.0008 | . .. MD 0 0.308431 0 0
VB 0.0322 | 0.0005 | 0.0050 | 0.0837 | 0.0615 | . .. VB 0 0.000028 | 0.000672 0 S
JJ 0.0306 | 0.0004 | 0.0001 | 0.0733 | 0.4509 | . .. DT 0 0 0 0.506099 | . ..

So here are the probabilities that would be used to calculate the probability of the tagged
sentence Time/NOUN flies/VERB like/MODAL an/DET arrow/NOUN:

BOS Time flies like an arrow EOS
P(N|BOS) P(VIN) P(M|V) P(DM) P(N|D) P(EOS|N)
P(time|N) P(flies|V) P(like]M) P(an|D) P(arrow|N)

0.5 Viterbi Search

Things become tricky when trying to tag a new sequence; we want, remember, argmax, P(W,T)
but finding this requires searching over the exponential number of sequences; even for a 5

4

word sequence over the 17-tag UD set, that’s 17° = 1,419, 857 sequences. We turn instead to
the Viterbi algorithm, a dynamic programming algorithm which uses the following intuition:

If we are at word n — 1 and have already calculated the best tag sequence ending in each
of the 17 tag types at word n — 1, then the best tag sequence to word n (which has tag EOS)
is one of 17 options: the best tag sequence to word n — 1 ending in tag 1 times the score for
tag 1 to EOS, etc.

But the best tag sequence to tag 1 at word n — 1 is one of 17 options: the best tag
sequence to n — 2 ending in tag 1 times the score for transition from tag 1 to tag 1 (times
the emission for word n — 1 with tag 1), etc.

To make things complete, we assume all sequences start with a special BOS word that
has an emission probability of 1 for the BOS tag

It’s helpful to work through the following chart using the provided statistics; we’ll do this
in class (note that in code you probably want to add logs instead of multiplying probs):

for t in range(tagset):
score[t][0] = emis[BOS][t]

for i, w in enumerate(words[1:]):
for t in range(tagset):

score[t]|[1] = max(score[:,i—1]xtrans|[t,:]*xemis[w][t])
trans N V. D P A EOS emis BOS a cat doctor in is the very
BOS 3 1 3 2 1 0 BOS 1 0 0 0 0 0 O 0
N 2 4 .01 3 .04 .05 N 0 0 5 4 0O 1 0 0
\Y 3 .06 3 2 1 .05 \Y% 0 0 0 1 0 9 0 0
D 9 .01 .01 .01 .07 0 D 0 3 0 0 o 0 .7 0
P 4 05 4 1 .05 0 P 0 0 0 0 1 0 0 0
A 1 5 1 1 1 1 A 0 0 0 0 d 0 0 .9
v w0=BOS wl=the w2=doctor w3=is wd=in EOS
BOS 1 0 0 0 0 0
EOS 0 0 0 0 0 .000027216
N 0 0 0756 001512 0 0
\Y 0 0 .00021 027216 0 0
D 0 21 0 0 0 0
P 0 0 0 0 0054432 0
A 0 0 0 0 00027216 0

0.6 OK, but what about more interesting features and discrimi-
native models?

In fact, we can use the perceptron algorithm here, just as we used it for simple whole-text
label prediction. Let’s revisit perceptron:

def train(labeled_sentences , options, featsize):

should be a better way to determine feat size
probably want to initialize differently
model = {’theta’: np.random(featsize)}
for i in range(iterations): # user—determined
for sentence, label in labeled_sentences:
hyp = classify (sentence, options, model)
if hyp != label:
model ["theta’] += features(sentence, label)—features(sentence, hyp)
return model
def classify (sentence, options, model):

scores = {}
for option in options:
scores [option] = evaluate(sentence, option, model)

return max(scores.items (), key=operator.itemgetter (1))[0]

The real problem is the classify function, which I included here, or actually the options
set. The point of classify is to find the maximum scoring sequence over all options. In
sentiment classification there were only three sentiments, so you could just do 3 lookups and
choose the best. But if there are ¢ possible tags and the sequence is n words long, there are t*
possible sequences. Thankfully, dynamic programming in general (and the Viterbi algorithm
specifically) lets us efficiently find the maximum score sequence. This then becomes what is
known as structured perceptron since you are ultimately learning to predict the structured
sequence of labels, and not just a single label at a time. We are no longer constrained to the
emission and transition probabilities.

Here is the viterbi algorithm, rewritten to use general features, assuming an appropriate
current 6 and a feats function which returns features based on the last label ¢/, the current
word w, and the proposed current label ¢ (column vector notation won’t work here but the
complexity hasn’t increased despite the deeper nesting):

for t in range(tagset):

score [t]|[0] = thetaxfeats (emptyset, BOS, t)
for i, w in enumerate(words[1:]):

for t in range(tagset):

score[t]|[1] = —infty
for s in range(tagset):
score[t]|[1] = max(score[t]|[i], score[s][i—1]xthetaxfeats (s, w, t))

What about logistic regression? Yes, this can be done as well (logistic regression over
structures is called conditional random fields and the specific dependencies we allow make
this a linear chain conditional random field), but it again requires efficiency changes, now to
both inference and learning. For inference we have already seen how to efficiently calculate;
the Viterbi algorithm is used to determine the argmax sequence. Because of the probabilistic
nature of logistic regression, we need to calculate the sum of all scores (the denominator of
softmax); this is an important component in gradient calculation. This can be calculated with
a slight variant to the Viterbi algorithm called the Forward algorithm and its counterpart,
the Backward algorithm.

Compare the Forward algorithm to the previous Viterbi algorithm:

for t in range(tagset):
score [t][0] = thetaxfeats(\emptyset, BOS, t)
for i, w in enumerate(words[1:]):
for t in range(tagset):
score[t][i] =0
for s in range(tagset):
score [t]|[1] += score[s][i—1]*thetaxfeats (s, w, t)

This calculates the partial score of all sequence labels from word 0 to t. The Backward
algorithm does the same calculation, but starts at the end of the sequence:

for t in range(tagset):
score[t][n] =1
for i, w in reversed (enumerate(words)):
for s in range(tagset):
score[s]|[i] =0
for t in range(tagset):
score[s|[1] 4= score[t][i+1]*thetaxfeats (s, w, t)

Rather than directly calculate features, naturally, we can use neural networks, and this is
in practice what is done today. However, the issue of exponential search still applies. Features
are calculated via a bidirectional RNN and those features are provided to a CRF. The whole
thing is differentiable and can be learned jointly (and is implemented using frameworks like
PyTorch). The set of features for each possibility is also calculatable via the same dynamic
programming approach used to calculate Forward/Viterbi.

