
Transformer Translation Models

Jonathan May

October 19, 2022(Prepared for Fall 2022)

This will look very similar to a previous note set, ‘Transformer Language Models.’ That’s
because I wrote this one first and then adapted it to language models. I revisit the architec-
ture here in the context of machine translation.

In 2017 some researchers at Google considered whether the recurrent part of RNNs/L-
STMs was really that important at all in neural MT. In the paper ‘Attention is all you
need’, they described their model, Transformer, which outperformed the state of the art at
the time, at a variety of data points and at lower cost to train.

Within a year or so Transformer models took over most of NLP as they were shown to
be useful as language models and as feature sets for classification and structured prediction
models. As I write this it’s unclear if yet another model will prove even more compelling
but these models seem quite good for now. All the images in these notes come from others’
papers, lectures, blog posts, etc. Apart from the original transformer paper I recommend
the illustrated transformer 1 or the annotated transformer2.

1 Base Model

We’re going to cover the details in Transformer in various order, sort of from the outside
in. To begin with, the overall shape is stacks of representations, conventionally of size 6,
with one representation stack per word in the input and in the output. To begin with let’s
imagine each block is just a feed-forward network. Each word is embedded, then at each
stage, it’s passed through nonlinear transformation via ReLU. In fact there are two linear

1http://jalammar.github.io/illustrated-transformer/
2https://nlp.seas.harvard.edu/2018/04/03/attention.html

1

transformations and one ReLU at each level. So if x is the embedding (or input from last
layer), the output is max(max(0, xW1 + b1)W2 + b2).

3

And as you might imagine, attention is heavily involved. There are multiple kinds of
attention but to begin with let’s consider the ‘normal’ attention we’ve already discussed, i.e.
from source to target words (from Illustrated transformer):

Notice that this attention is performed at every layer of the decoder.

1.1 Key, Query, Value Attention

Here’s how we did attention before (fig from abi see):

3W1 is (512× 2048) and W2 is (2048× 512).

2

let h1, . . . , hN be hidden states of the encoder and st be the hidden state of the de-
coder. Then score vector e(t) = [sTt h1, s

T
t h2, . . . , s

T
t hN]. Then distribution vector α(t) =

softmax(e(t)). Then make a linear combination of h; at =
∑N

i=1 α
(t)
i hi. That is then concate-

nated to st and used to predict.
Transformer does it a bit differently. Instead of directly taking a dot product of st

and each hi, each of these is transformed linearly; st by a “query” matrix Q and hi by a
“key” matrix K. Then stQ(hiK)T is the score; this is done for every hi and turned into a
distribution αt by softmax.4

Now, instead of using αt to linearly combine each hi, the hi are transformed again by a
“value” matrix V . These are then linearly combined. That is then fed to the feed-forward
unit. Attention, followed by feed forward, is one layer, and there are six.

1.2 self-attention

Why should attention be limited to target words looking at related source words? For ht

we can calculate α
(t)

self
= htQ(hiK)T on the source side. On the target side we can almost

do the same thing; we calculate stQ(siK)T but only for i < t; otherwise we’d be training
on the future, which is not helpful at inference time! In practice a mask is used to prevent
‘peeking’ on the decoder during training.

I think the figure below by Alireza zareian nicely expresses the calculation for self-
attention:

4Not quite. Actually it’s stQ(hiK)T√
|K|

, i.e. divide by the dimension of K. This keeps gradients from getting

too small, per notes in the paper.

3

So each layer constitutes a number of sublayers. Jay Alammar of Illustrated Transformer
has a nice figure:

1.3 multi-head

Self attention can be viewed as a generalization of convolving kernels used in convolutional
neural networks (CNNs). CNN filters, however, have dimension tied to the relative offset
of adjacent inputs (words, pixels, hidden units) while the same Q, K, and V are applied to
each input on a layer (different set for source, self-encoder, and self-decoder). Also, CNN
filters do fixed combination, not a distributional interpolation. But the information sharing
paradigm is very similar.

What are we actually doing when we do self-attention? In source-attention the semantics
seemed clear; we’re looking at corresponding words to be translated. But in self attention
that’s not the case. We are probably combining some semantic and syntactic coordination.

But there are different aspects of information we might want to attend. It seems odd to
distill them down into a single (Q, K, V) triple. And since we noticed the similarity to CNNs
we can use a technique used in CNNs: multiple filters! Indeed, we actually do attention in
one place many5 times with a different learned (Q, K, V) set for each time; each attention
that is learned is called a ‘head’. Rather than use e.g. max-pooling or mean-pooling as is
often done in CNN, Transformer instead does a linear projection of the heads (Alammar):

Here is attention all together (Alammar):

5eight

4

1.4 Residual Connections and Layer Norm

In the story we’ve told so far, data enters a layer, is combined with information from all the
other words in the sentence (so far, for decoder) with self attention, if the decoder, is then
combined with all the words in the source, then is projected through a feed-forward layer.
So if we call the input to a layer x and the self-attention, source-attention, and feed-forward
sublayers functions self , source, and ff , the output on the encoder is ff(self(x)) and on
the decoder is ff(source(self(x))). This seems like a good opportunity for the information
at that position to get lost; self-attention could decide not to attend to the self! A well-
known technique called residual connections is used; in each case we simply add the input
back again after each sublayer. This is only done per-sublayer.

We introduce some sub-results: on the encoder we calculate x′ = self(x) + x. Then
the output is ff(x′) + x′. Similarly on the decoder we calculate x′ as before, then x′′ =
source(x′) + x′ and the output is ff(x′′) + x′′.

OK but we don’t actually even use the original x or the other intermediates without
modification either! Instead we use a technique called ‘layer norm’ [?] which essentially
modifies each item by subtracting the mean and divides by the standard deviation over the
vector.6 So in fact x′ = self(norm(x))+x, and for the decoder, x′′ = source(norm(x′))+x′;
For the encoder, the output is ff(norm(x′))+x′, and for the decoder it is ff(norm(x′′))+x′′.
This is not well-described in the original paper but is what has been uncovered (by TG and
others). We now know almost everything in this handy diagram from the original paper:

6it’s a little more complicated than that but this is already rather in the weeds.

5

6

