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Preamble

These notes are possibly the most likely of all notes you’ll get in class to go out of date. As
of 2023, when I'm writing this preamble, the latest and greatest models are coming out and
making big splashes on a daily basis. It’s not going to be possible to keep up. So we will
focus on the general idea of pretrained LMs in the notes and talk about the latest ones in
class.

1 ELMo

In 2016, the predominant use of ‘neural networks’ in NLP was to insert type-based word
embeddings like GLoVE or GenSim (implementation of Word2Vec) into existing models.
ELMo (Embeddings from Language Models) from AI2 came out in 2018 and introduced what
it pitched as better embeddings. It showed across-the-board improvement on a number of
diverse NLP tasks and was, not surprisingly, the best paper at NAACL, given that everyone
knew about it by the time the conference came around (it was first posted in October 2017).
The claim was that this is a set of contextualized word embeddings. That is, instead of
having one representation for bank, the word has a different representation depending on the
context (i.e. sentence) it appears in.

How is this done? Well, first a contextual model of text is needed. That’s easy, we've
already seen several. This predates (sort of) Transformer, so ELMo used the predominant
method at the time, bidirectional LSTMs.

LSTMs are trained on plain text for the language modeling task, i.e. predict the next
word (for the forward LSTM) or the previous word (for the backward LSTM). Here’s an
illustration from The Ilustrated BERT: *

http://jalammar.github.io/illustrated-bert/
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This is trained on the Billion Word Benchmark [1] which is 1B English words from WMT
2011. That probably took a while but AI2 did it so you don’t have to!?

Now an embedding of a word in its context is obtained by running the context (i.e. the
sentence) through the trained bi-LSTM and reading off the hidden state in both directions.
Or, as it turns out, you can take some linear interpolation of hidden states at each layer;
specifically how to linearly interpolate can be chosen by fine tuning interpolation parameters.
However the core embeddings aren’t fine tuned; they’re just produced and used.

What was really cool about ELMo is you could use these embeddings in place of embed-
dings in your previously built models for various tasks and you pretty much got a gain. The
most impressive results presented with the ELMo paper were across-the board lifts in the
GLUE [13] tests by taking SOTA models and substituting in ELMo embeddings:

2Note: how are the words initially embedded? The paper is pretty murky about this! Best I can figure
they are read in as a character CNN (but I won’t get into the details about this; somewhat also murky
details are in [5] — this is what happens when you don’t use peer review...which became explicitly a feature
by GPT-4.)



) Our ELMo + Increase
Task Previous SOTA . ) 5
baseline Baseline (Absolute/Relative)

SQUAD SAN 84.4 81.1 85.8 4.7/24.9%
SNLI Chen et al (2017) 88.6 88.0 88.7 +/-0.17 0.7/5.8%
SRL He et al (2017) 81.7 81.4 84.6 3.2/17.2%
Coref Lee etal (2017) 67.2 67.2 70.4 3.2/9.8%

91.93 +/-
NER Peters et al (2017) A0 90.15 92.22 +/-0.10 2.06/21%
Sentiment (5- McCann et al

53.7 51.4 54.7+/-0.5 3.3/6.8%
class) (2017)

Here’s a bar graph (sam bowman slides)
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I should probably mention what these tasks are:
e SQuAD: question answering, extractive. Find the span.

e SNLI: natural language inference, aka ‘entailment’: given a pair of sentences (A, B),
does B entail A, contradict A, or is it neutral to A? If A="Three men are stand-
ing in a field” and B=‘People are standing’, B entails A. If B=‘People are sleeping’,
contradiction. If B="The field is covered in snow’, neutral. Classify correctly.

e SRL: determine the semantic roles of text spans as they relate to verbs (e.g in ‘Mary
sold the book to John’, Mary=agent, John=recipient, sold=predicate). Classification.

e Coref: Determine which mentions are of the same entity
e NER: find the spans and label with entity type

e Sentiment: classify sentence sentiment in a 5-way label

2 OpenAl GPT

Not to be out done, in June 2018, OpenAl improved upon ELMo in a paper that IMO didn’t
get too much attention [10], maybe because it wasn’t even put on ArXiv AFAICT, let alone
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submitted for publication. It had the following differences from ELMo:

e Transformer architecture instead of biLSTM. Along with that, using BPE.

e Designed directly for task prediction, with no other architecture, and carried with it a
notion of fine-tuning; a task (e.g. multiple choice question answering) is turned into
input sequences (e.g. question, separator token, answer choice). The topmost hidden
unit after reading the last word is connected to a feed-forward classifier. Cross entropy
on the classifier back-propagated.

e Trained on different data (Books corpus = 800M words)

GPT is essentially a Transformer decoder without source attention to an encoder. In other
words, it uses masked self-attention that only looks to its left. If it didn’t, the topology of
Transformer means it could 'cheat’:

Unidirectional context Bidirectional context
Build representation incrementally Words can “see themselves”
open a bank open a bank
t t t ! t t
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i f f | i i
‘ Layer 2 H Layer 2 H Layer 2 ‘ ‘ Layer 2 ':‘ Layer 2 m Layer 2 ‘
f f f i i f
<s> open a <s> open a

Here’s an illustration of how task prediction works. You structure your input data as a
series of sentences and then put a feed forward /linear layer on the end to map to classification.

Classification | Start I Text l Extract H—-{ Transformer I——| Linear I

Entailment | Start I Premise l Delim | Hypothesis I Extract I_——I Transformer |——| Linear |

| Start ] Text 1 l Delim | Text 2 I Extract |_-—[ Transformer
Similarity - Linear
| Start | Text 2 I Delim | Text 1 I Extract I——I Transformer

| Start ] Context l Delim I Answer 1 IExtract I_——[ Transformer I——l Linear

Multiple Choice| Start l Context l Delim | Answer 2 IExtract I_——I Transformer I——| Linear

| Start | Context I Delim | Answer N IExtract |_—>I Transformer H Linear

I didn’t actually hear GPT until reading the BERT paper...maybe BERT had better
marketing. The folks at OpenAl learned their lesson and resolved never to be ignored again.



3 BERT (images from Jacob Devlin slides)

ELMo had a few months of glory (and everyone(?) ignored GPT) until October 2018 when
Google struck back with BERT (Bidirectional Encoder Representations from Transformer)
2], clearly riffing on the muppet theme.? Like GPT, BERT used Transformer and subwords
(though it used google’s slightly different WordPiece [14]). BERT also used the fine tuning
paradigm. But there were more important differences:

e New objectives: Bidirectional prediction using word masking and next sentence pre-
diction

e More structured two-sentence representation, class token for predictions included dur-
ing training (first word of every input is the otherwise unused [CLS]).

e Pretraining+Fine Tuning recipe
e Trained on a lot more data (Wikipedia = 2.5B words + Books corpus = 800M words)

e There’s a large version of BERT with tons (at the time) of parameters: for L=layers,
H=hidden units, A=attention heads, BERT-BASE = (L=12, H=768, A=12, Total
Parameters=110M) = same size as GPT; BERT-LARGE = (L=24, H=1024, A=16,
Total Parameters=340M)

In ablation studies, the BERT authors claim the key is in the pretraining tasks: GPT
and ELMo just pretrained on the language model objective (predict next word).

To pretrain, BERT masks out 15% of the words from its training data and then tries to
predict them (15 seemed to be the magic number):

store gallon

f

the man went to the [MASK] to buy a [MASK] of milk

BERT also structures its input in the following way:
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An encoding value is learned (same value on each position) for ‘sentence 1’ vs ‘sentence
2" and added to each embedding. This is how data is then set up (see above). The [CLS]
token is used instead of the last word token used in GPT.

3Yes, there were more muppet themed papers: GROVER (Generating aRticles by Only Viewing mEtadata
Records.) [15], ERNIE (Enhanced language RepresentatioN with Informative Entities) [16] (I think there
were two ERNIEs actually). There was something branded ‘big bird’” but it wasn’t part of the paper name.
The trend seems to have eased, thankfully.



Two pretraining losses are calculated. For each MASK token, the top level hidden unit
corresponding to each MASK predicts a word from the vocabulary (well, loss for probability
of the correct word is calculated). Only sometimes (10%) a random word is used instead
of [MASK] and sometimes (10%) the right word is used, but the 15% of words we need to
predict in this pretraining are specified in the training corpus. Note that now self-attention
can span the entire sentence.

Additionally, a next sentence prediction task is used: Either sentence 2 is the next
sentence or it isn’t, and this is learned by feeding the top hidden unit for [CLS] into a
binary classifier.

Apart from pre-training, BERT uses per-task fine-tuning. Here’s a diagram from the
BERT paper comparing the two:

NSP Mask LM Mask LM

i ®
- G- &)
BERT
] EEE] el EEE
AEE- EEE- = EE- EEE- &
3 G 2- & FE- CE=E- 6
Question Paragraph

Masked Sentence A - Masked Sentence B

Unlabeled Sentence A and B Pair Question Answer Pair

Pre-trainina Fine-Tunina
Fine tuning is the same idea as before, though BERT can be used both in classification

and tagging paradigms (so could the other models, presumably). Here are the setups (from
BERT paper):

Class
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OO0 oo

BERT
e EEE-
BR- GE-
I I

Senlence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: b} Single Sentence Classification Tasks:
MMLI, GQP, GNLI, STS-B, MRPC, S8T-2, CalA
RTE, SWAG
StarvEnd Span

BERT
EE -
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Queston Paragraph Single Senlence
(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
S0uAD w1 CoNLL-2003 NER

Here’s an overview comparing the topologies of ELMo, GPT, and BERT (from BERT
paper):



BERT (Ours) OpenAl GPT ELMao

Results were significant:
i} GLUE Score
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65

55

GloVe BoW Single-Task Model Sentence-to-Vector ELMo OpenAl GPT BERT Large
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 799 90.4 36.0 73.3 849 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 80.0 82.3 56.0 75.2
BERT gase 84.6/83.4 71.2 90.1 93.5 52.1 85.8 88.9 664 79.6
BERT arGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9
The tasks:

e MNLI: like NLI but done over many genres, supposed to be less biased (we’ll get into
that)

e QQP: Quora question pairs: given two questions, are they asking the same thing?

e QNLI: SQUAD converted into a binary NLI task (does this sentence answer the ques-
tion?)

e SST-2: Binary sentiment analysis

e CoLA: Given an english sentence, is it ‘acceptable’ to native ears (‘Bill’s book has a
red cover.’) or not (‘The Bill’s book has a red cover.”)

e STS-B: Sentence pairs annotated with score from 1 to 5 on semantic similarity

e MRPC: Are two sentences semantically equivalent?
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e RTE: Like MNLI but much less training data

An additional GLUE task, WNLI, is the Winograd challenge (Resolve ‘it’ in ‘The trophy
didn’t fit in the suitcase because it was too big/small.”) At BERT publication no model,
including BERT, outperformed majority baseline (65.1). (This has since changed.)

A quick followup from Facebook, RoBERTa (Robustly Optimized BERT pretraining
Approach) [9]:

e Even more data. Everything in BERT (Book Corpus and Wikipedia = 16GB uncom-
pressed) plus Common Crawl news (76 GB after filtering) plus web text data linked to
from reddit with 3+ upvotes (38 GB) plus a subset of common crawl filtered to look
like winograd stories (31 GB).

e Unlike BERT, masking was done multiple times on sentences.

e Next Sentence Prediction as described in the BERT paper (but possibly not in the
implementation) seems to hurt, so it was removed. Just masking is used. (So what
happens to the CLS token training? Presumably only fine-tuning is used to make it
meaningful but this is somewhat unclear to me.)

e Using the same training settings as BERT, and the same data, RoOBERTa was better.
When adding more data and training even longer it was even better.

MNLI OQNLI QOQP RTE 55T MRPC CoLA STS WNLI Awvg

Single-task single models on dev

BERT! snce B6.6/- 2.3 913 704 932 8RO 60.6  90.0 - -
XLNet; snce B9.8/- B39 918 B3E® 956 892 63.6 918 - -
RoBERTa 90.2/90.2 947 922 B66 964 909 68.0 924 913 -

Ensembles on test (from leaderboard as of July 25, 2019)

ALICE 8B.2/B79 957 907 835 052 926 68.6 011 BOE 863
MT-DNN 879/874 960 B9Y  B63 965 927 684 911 B9.0D BTG
XL Net 00.2/808 986 903 863 968 930 67.8 0l6 904 8R4

RoBERTa 90.8/M90.2 989 902 8B2 0967 923 67.8 922 B9.0 B85S

There have since been many more:

e DistilBERT [12]: Almost as good as BERT but a lot faster and smaller
e AIBERT [6]: A Lite BERT. same idea.

e BART [7] BERT but a sequence-to-sequence model, useful for generation and classifi-
cation

e T5 [11] really big Transformer trained on Common Crawl filtered for English, then
fine-tuned on a lot of tasks all at once

e Multi-language versions of these

e Domain-specific versions of these



Here’s a refreshed (as of 2023) leaderboard for GLUE. Human level performance is cur-
rently #23 on the list and not shown.

Score ColLA SST-2 MRPC  STSB QQP MNLE-m MNLE-mm QNLI  RTE WNLI

1 Microsoft Alexander v-team Turing ULR v6 (' 913 733 975 9421923 935931 764909 925 921 967 936 979 554

2 JDExplore d-team Vega v1 913 738 97.9 94.5/92.6 935831 767011  92.1 919 967 924 979 514

3 Microsoft Alexander v-team Turing NLR v5 (4 o912 726 o976 93817 937933 76411 926 924 979 941 953 570

4 DIRL Team DeBERTa + CLEVER 911 747 976 933/91.1 93.4/931 765010 921 918 967 932 966 533

5 ERNIE Team - Baidu ERNIE (' 911 755 o978 sa9mis s30M26 752009 923 917 973 926 959 517

4 HuggingFace

A major aid to experimentation is HuggingFace (https://huggingface.co/) which has
come to prominence by making these models and others not discussed here available as
pretrained PyTorch with common user interfaces. They are relatively easy to use and it’s easy
to compare different models and see which works best on your task. At current writing (this
section last edited in 2023) they are practically a de facto standard, though such standards
change over time and lots of prior work doesn’t use their architecture. Nevertheless, I
recommend you check them out at https://github.com/huggingface.

5 Parameter Efficiency

The models we’ve so far discussed follow the paradigm that out of the box they don’t do too
much but when you expose them to some supervised data that is an exemplar of a task and
fine-tune their parameters they can do the task when given more input data. One problem
with this paradigm is that the base models are quite large, and then when fine-tuned you
have another model that is as large as the base. If you have k tasks you have to store k
copies of the fine-tuned base model. This is inefficient, so there have been efforts to allow
the scaling to many tasks without exploding the number of models that have to be saved.
This is an active area of research (as of this 2023 update), but here are a few interesting
approaches to parameter efficiency.*

5.1 Multi-Task Learning

If you train a model to do more than one thing, then you implicitly are saving parameters.
T5 (referenced above) is one example of that approach. The pretrained model is fine-tuned
on many tasks all at once, each prepended with an instruction relevant to that task. T5 has
since been further fine-tuned on more downstream tasks. A limitation of this approach his
that the instructions are ‘hard’, i.e. you can do the tasks you’re trained on but it isn’t clear
you can do any other tasks.

5

4Some of what follows from here: https://github.com/allenai/ac12022-zerofewshot—tutorial
5Note that the term multi-task learning is also applied to a case where you use a single model to do two
different kinds of prediction at the same time. I’'m abusing the term here.



[ "translate English to German: That is good."

“cola sentence: The
course is jumping well."

"Das ist gut."
"not acceptable”

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

“six people hospitalized after
a storm in attala county.”

dispatched emergency crews tuesday to
survey the damage after an onslaught
of severe weather in mississippi..”

[ “summarize: state authorities

5.2 Continuous Prefix Tuning

The idea behind prefix tuning® and a number of other related works is that, rather than
imagining or declaring what the task prefix will be as in T5, it might be better to learn
the prefix as well. Thus, we can imagine several otherwise unused tokens being learned
when a pretrained model is exposed to new task data; the rest of the model isn’t modified!
Then, instead of preceding your input with ‘summarize’ you precede it with ‘(TASK465]’
or whatever that you’ve previously learned. You could do this for any number of tasks
independently. There are a few versions of this; the one from [8] is shown below. The results
on a few tasks are sometimes better than full fine-tuning but the goal is to reach parity
despite only fine-tuning 0.1% of the parameters.

Fine-tuning

mame Biwrhusks typs coties shop [BEF] Ssarbucks serves coties

IPT\'Ill'lﬂ b Inpiit (bl e-tacct| Carpan fasbis-ror g
" Pra Prefix-tuning
(Burwrarapbon)

L= '3

| I'filll-'lﬁ-ﬂ-"".l'l:l Transformar (Pratrainesd)

st Starbickd Wype cotim abop [DEF] Sarbucks danad coifes
ripr b e D fushie-no-in et

5.3 Adapters

Adapters [3] are kind of the same idea as prefix tuning but instead of adjoining to the left of
the stack, they surround each layer of the transformer. The motivation for these came out
slightly differently from those of prefixes; before adapters people were playing around with

Shttps://aclanthology.org/2021.acl-long.353/
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only fine-tuning some of the layers in a PTLM, and adapters were shown to be more efficient
than this approach. A slightly larger footprint was claimed in the original adapters paper
(3.6%) than by prefixes, but this is of course a hyperparameter. Below is a figure from the
paper showing how adapters are added in. A goal of adapters had been to make a ‘plug and
play’ approach to model specialization by using off-the-shelf adapters built for one task and
combining them together; I haven’t heard too much about this lately, probably because of
zero shot models changing the paradigm somewhat.

~ Adapter A
Layer

[OO0OO0O00]

Transformer
Layer

Feedforward
up-project

Nonlinearity

2x Feed-forward
layer

Feedforward
down-project

[eXeXeXeXoXo)

Multi-headed
attention

..................

5.4 LoRA

Instead of adding parameters around the current stack why not add them to the stack?
That is, given d x d weight matrix W (e.g. a Q, K, V matrix), let W’ = W + W, and let
W, = Wiy x Wig where Wy is d x r and Wiy is r x d, r << d. How much lower? Well it
varies but values of 4 or 8 were used in the paper [4]. A ‘shadow matrix’ was learned for the
W matrices (sometimes only a subset of them). As few as 0.02 parameters were learned (in
the case of GPT-3) with very good results! Deep in the appendix of the paper the authors
noted the combination of LoRA and prefix tuning worked very well!

1 —

# Trainable | WikiSQL MNLI-m  SAMSum

Dajel&chietod Parameters | Acc. (%) Acc. (%)  RI/RZRL
St GPT-3 (FT) 175,255.8M | 738 89.5  52.0/28.0/44.5
i GPT-3 (BitFi) 142M | 713 91.0  S1.3/27.4/435
Weights GPT-3 (PreEmbed) 32M | 631 88.6  48.3/24.2/405
- GPT-3 (PreLayer) 202M | 70.1 89.5  S50.8/27.3/43.5
WeR GPT-3 {Adapter')) TIM | 719 R9.8  53.0/28.9/44.8
GPT-3 (Adapter™) 40.IM | T32 91.5  53.2/29.0/45.1
GPT-3 (LoRA) 47M | T34 917  53.8/29.8/45.9
GPT-3 (LoRA) I77M | 740 91.6  53.4/29.2/45.1
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6 Zero-Shot Models

6.1 GPT-2

OpenAl, presumably not happy with being overshadowed by BERT, but not really interested
in branding any better, released the paper “Language Models are Unsupervised Multitask
Learners”” that described GPT-2 in February 2019. It was trained on 8m documents, 40gb
of text, sourced from outbound links from Reddit. The biggest model, at 1.5b parameters,
exceeded SOTA performance considerably on a variety of LM sets even though it was not
adapted to them. It was even able to do well (but not SOTA) on machine translation,
question answering, and summarization tasks just by passing in natural language sequence
prompts that attempted to elicit the kind of task response desired (e.g. inputting an article,
then “TL;DR”, then allowing the system to generate). The thing that really made the news
was the (cherry-picked) ‘unicorn’ story. The other thing that made the news was OpenAl’s
refusal to let nearly anyone actually use the full system for the first year or so, claiming
it was ‘too dangerous.” So there was a lot of skepticism. But eventually the models were
released and the claims were in fact justified.

Language Models are Unsupervised Multitask Learners

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB  enwik8 text8 WikiTextl03  IBW

(PPL) (ACC) [ACC) (ACT) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)
SOTA 99.8 59.23 BT B23 914 46.54 0.55 1.08 18.3 218
117TM 3513 45.99 B7.65 834 2941 65.85 116 117 37.50 75.20
345M 15.60 5548 92.35 7.1 1176 47.33 1.01 LO6 26.37 55.72
T6IM 10.87 60.12 93.45 BE.0 19.93 40.31 0.97 Loz 2205 44575
1542M B.63 63.24 93.30 B9.05 18.34 35.76 0.93 0.98 17.48 41,16

Table 3. Zero-shot results on many datasets. Mo training or fine-tuning was performed for any of these results. PTB and WikiText-2
resulis are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

"https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf
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Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicoms spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’'s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

MNow, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biclogist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be
seen from the air without having to move too much to see them - they were so close they could touch
their horns.

While examining these bizarre creatures the scientists discovered that the creatures also
spoke some fairly regular English. Pérez stated, *“We can see, for example, that they have a common
language,” something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals
were believed to be descendants of a lost race of people who lived there before the arrival of humans
in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created
when a human and a unicorn met each other in a time before human civilization. According to Pérez,
“In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it 1s likely that the only way of knowing for sure if
unicorns are indeed the descendants of a lost alien race is through DNA. “But they seem to be able to
communicate in English quite well, which I believe is a sign of evolution, or at least a change in
social organization,” said the scientist.

Table 13. Conditional generation on an out-of-distribution context by GPT-2. Cherry pick of 10 samples generated with & = 40.

It’s worth pausing to describe the two (ish) approaches that are being proposed here and
why they are now so cool. The main reason they are cool is that the model parameters

aren’t ever changed, so manipulation of behavior occurs only at inference time.

1. In-Context Learning or demonstration based learning. Several (two? three? ten?)
examples of desired input-output behavior are given, then one or several inputs without

an output are given and the model produces outputs that follow the pattern.

. Instruction Learning. A natural language description of what is wanted is produced,
then an input is given, and the model produces outputs that are responsive to the

instruction.

In practice, both are used together. There are also questions about the specific value of

each component (see below).
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6.2 GPT-3

In 2020 OpenAl released “Language Models are Few-Shot Learners”® which heralded the
release of GPT-3 in a paper that was 72 pages long (GPT-2 paper was 24 pages long) and
that described a model with 175b parameters. It was trained on 570gb of text (500b tokens)
from common crawl, their previous data set, and some other ‘high quality’ data sets. When
prompted with only a few examples (and sometimes with none at all) it outperformed SOTA
on a wide variety of tasks, including common sense reasoning tasks, machine translation,
question answering, and others. This time OpenAl set up an API and web interface so that
researchers and others could use the models. The results have been really excellent though
sometimes care is needed to prompt appropriately.

Model Name Mparams  Tlayers Arnadel Theads Ohead Batch Size LCﬂ-lTlil'lE. Rate
GPT-3 Small 125M 12 T68 12 64 0.5M 6.0 = 1071
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 = 104
GPT-3 Large T60M 24 1536 16 96 0.5M 2.5 = 1074
GPT-3 XL L.3B 24 2048 24 128 IM 2.0x 1074
GPT-3 2.7B 278 32 2560 32 80 IM 1.6 = 1074
GPT-3 6.7B 6.7B 32 4096 32 128 M 1.2% 1074
GPT-3 13B 13.0B 40 5140 40 128 M 1.00% 104
GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3i2Mm 0.6 % 101

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

6.3 Chat GPT and beyond

With somewhat less fanfare, in March 2022 OpenAl released ‘Training language models to
follow instructions with human feedback™ and replaced its GPT-3 models with these. Even
the smallest (1.3b param) models were shown to be preferred to GPT-3 175b by users.
They were fine-tuned to respond better to user prompts using ‘Reinforcement Learning with
Human Feedback’ (which we will cover in a separate lecture). The authors also claim these
models are less toxic than previous models.

In late November 2022, OpenAl released Chat GPT, a chatbot interface that wrapped
this enhanced GPT-3 in a free-to-use and widely available interface. The promotion of and
response to ChatGPT was very very loud. Within a few months seemingly everyone, even
beyond the tech world, was aware of the technology, surprised at what it could do, and
possibly scared of it. This kicked off an arms race among leading tech companies to build
their own models (which started being called ‘large language models’ despite the term being

fairly vapid).

6.4 Why/how does in-context learning work?

(From https://github.com/allenai/acl2022-zerofewshot-tutorial)
Some views (this is an area of active study, though):

Shttps://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.02155
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e Demonstrations do not teach a new task; instead, they allow the ‘locating’ of an
already-learned task during pretraining (Reynolds & McDonell, 2021)

e LMs do not exactly understand the meaning of their prompt (Webson & Pavlick, 2021)

e Demonstrations are about providing a latent concept so that LM generates coherent
next tokens (Xie et al. 2022)

e In-context learning performance is highly correlated with term frequencies during pre-
training (Razeghi et al. 2022)

e LMs do not need input-label mapping in demonstrations, instead, they use the speci-
fication of the input & label distribution separately (Min et al. 2022)

e Data properties lead to the emergence of few-shot learning (burstiness, long-tailedness,
many-to-one or one-to-many mappings, a Zipfian distribution) (Chan et al. 2022)

An interesting finding from all of this (from Min et al 2219) is that you can prompt with
examples but random answers and get basically the same results.

[ Input: An effortlessly accomplished and richly resonant work.
Label: positive

Input: A mostly tired retread of several other mob tales.
Label: negative

Input: A three-hour master class.
Label:

Input: An effortlessly accomplished and richly resonant work.
Label: negative

Input: A mostly tired retread of several other mob tales.

Label: positive
Input: A three-hour master class.
| Label:
s Classification
6ol No Demos Demos w gold labels Demos w/ random labels
— 55
=
= 501
P
4
E. 2
E A0
< a5
a1
B MelalCL (774M) GPT] (6B GPT-3 {1751
— Multi-choice
20 No Demos Demos wi gold labels Demos w/ random labhels
- 65
&#
= hi |
)
| E—.
E a3
E a0
< 45
40
F T MetalCL (774M) GPT (6B) GPT-3 {175B)

Ohttps://arxiv.org/abs/2202.12837 via the aforementioned tutorial
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