
Dependency Syntax

Jonathan May

November 8, 2024

1 Why dependencies?
It turns out lexicalization is pretty important to syntactic parsing. This is at first a bit surprising,
since syntax is concerned with the order of words and not their content. The famous sentence
‘Colorless green ideas sleep furiously’ (Chomsky 1957) is an example of a syntactically valid but
semantically vacant sentence. It clearly has a parse:

(S

(NP

(JJ colorless)

(JJ green)

(NN ideas))

(VP

(VBP sleep)

(RB furiously)))

But as we previously saw, rules like S -> NP VP without lexicalization can lead to lots of
apparent ambiguity.

Another problem is that not all syntactic behavior occurs in contiguous phrases. This is par-
ticularly true in languages with free word order but even occurs in English; e.g. ‘The hearing is
scheduled on the issue today.’ There is a relationship between ‘on the issue’ and ‘the hearing’ but
that relationship isn’t really expressible only through contiguous phrases.

Finally, as sentence length grows, a significant part of the parse is far from the word level, and
this, it turns out, is less helpful in downstream tasks. We mostly want to know the relationship
between words in a sentence. Specifically, the connection between phrases and the heads of sub-
phrases contained within them is important.

What is a head? This is actually a tricky linguistic question. Informally it’s:

• The most important word in a phrase

• The main content word in a phrase

• The word that determines the phrase’s label

• The word that other phrases have to agree with (e.g. in case or gender)

1

This can sometimes lead to inconsistencies. In the prepositional phrase ‘with the mayor’ is
‘with’ the head (determines the label) or is ‘mayor’ (the main content word)? It depends on which
linguist you ask; the rules behind the Penn treebank say the preposition, while the rules behind
universal dependencies say the noun. As long as you use consistent head finding you will be okay.

2 What are dependencies?
Here is an example for the sentence ‘She wanted to buy and eat an apple’ (from the UD guidelines):

1 she 2 nsubj
2 wanted 0 root
3 to 4 mark
4 buy 2 xcomp
5 and 6 cc
6 eat 4 conj
7 an 8 det
8 apple 4 obj
9 . 2 punct

Pictorially we can represent it like so (using the amazing tikz-dependency package):

she wanted to buy and eat an apple .

root

nsubj mark

xcomp

cc

conj

det

obj

punc

Or this:
wanted

she buy

to eat

and

apple

an

.

• Every word in a sentence except one has only one parent (or governor) word, which is the
head of the smallest syntactic unit it is not the head of. A word may have zero or more words
that consider it their head.

• The word which has no head is the root of the sentence.

• Each parent-child relationship may be annotated with a label connoting the role of the phrase
the child is the head of. There are 37 such label types in universal dependencies.

2

The consequence of these requirements (particularly the first two) is that this will form a tree.
There is an extension to this formalism called enhanced dependencies that annotates more rela-
tionships and forms graphs (i.e. words can have more than one head). We won’t discuss them
here.

3 Conversion from Constituencies, planarity, and projectivity
What is the relationship between constituencies and dependencies? You can convert a constituent
tree into a (unlabeled) dependency tree as follows:

S

NP

PRP

she

VP

VBD

wanted

S

VP

TO

to

VP

VB

buy

CC

and

VB

eat

NP

DT

an

NN

apple

1. Head-lexicalize the tree
S/wanted

NP/she

PRP/she

she

VP/wanted

VBD/wanted

wanted

S/buy

VP/buy

TO/to

to

VP/buy

VB/buy

buy

CC/and

and

VB/eat

eat

NP/apple

DT/an

an

NN/apple

apple

3

2. remove phrase labels
wanted

she

she

she

wanted

wanted

wanted

buy

buy

to

to

buy

buy

buy

and

and

eat

eat

apple

an

an

apple

apple

3. merge children into parents with same label
wanted

she buy

to and eat apple

an

Notice it’s not the same dependency as above! This is because the original example was an-
notated as a dependency, and this is converted from another structure, with different annotation
standards and possibly different head rules.

Converting from dependencies to constituencies is in general not possible. Apart from the
labeling problem (which also exists in the other direction) there is too much ambiguity introduced
in the simpler dependency structure. More importantly, dependencies cannot be converted at all
if they are not planar1, i.e. if the arcs cross when the words are arranged in order. Such a tree is
non-projective. Here is an example:

A hearing is scheduled on the issue today

root

det

nsubj:pass

aux:pass

case

det

nmod

nmod:tmod

Thankfully non-projective dependencies are pretty rare in English.

1misleading to those very familiar with graph theory; see Kuhlman 1998

4

4 Parsing Methods
It turns out that parsing methods for dependencies are often a lot faster than those for constituen-
cies. The one we will discuss, shift-reduce, is linear-time and greedy (though it can be beamed)
and can take a wide variety of features. It doesn’t handle non-projectivity, however. The second
one, Chiu-Liu-Edmonds, is quadratic and optimal but somewhat limited in its feature set. We won’t
discuss it in detail but I provide several pointers.

4.1 Shift-Reduce
Big idea of shift-reduce parsing: you keep a stack of words/partial structures you are processing
and a buffer of words you haven’t started processing yet. At each time step you do some work (an
operation) at the top of the stack. In ‘arc-standard’ parsing there are the following operations:

• SHIFT = move a word from the buffer to the top of the stack; αw|xβ⇒ αwx|β

• LEFT-ARC-label = top of stack is parent of second in stack; add label; top of stack stays in
(pop 2nd); αwx|β⇒ αx|β; w← x

• RIGHT-ARC-label = second in stack is parent of top in stack; add label; second in stack
stays in (pop top); αwx|β⇒ αw|β; w→ x

So this becomes a classification problem with 1+2× labels choices. We’ll get into what makes
good features for this but it’s first helpful to walk through a parse. Additionally, in order to train
a classifier you need a lot of examples of a configuration and a choice of label. There is a general
procedure for converting from a dependency tree into the sequence of parse steps that will form it.
Using the tree as a guide:

• If stack[0] is the parent of stack[1] with label l, LEFT-ARC-l.

• If stack[1] is the parent of stack[0] with label l and no dependents of stack[0] are still
in the buffer, RIGHT-ARC-l.

• Otherwise, SHIFT

Here is an example parse tree (unlabeled) and a walkthrough; we’ll go over it in class:

book the flight through houston

root

5

ROOT book the flight through houston SHIFT
ROOT book the flight through houston SHIFT
ROOT book the flight through houston SHIFT
ROOT book the flight through houston LEFT the← flight
ROOT book flight through houston SHIFT
ROOT book flight through houston SHIFT
ROOT book flight through houston LEFT through← houston
ROOT book flight houston RIGHT flight→ houston
ROOT book flight RIGHT book→ flight
ROOT book RIGHT ROOT→ book
ROOT Done

A potential problem is that shift-reduce is greedy and an early bad decision can lead to later
problems. We can beam, i.e. consider k possibilities simultaneously. We then consider the k best
successors of these, trim back to only k, and continue. This is still linear in sentence length, i.e.
nk2.

Another problem is that arc-standard is strictly ‘bottom-up’ in that it is cautious, particularly
about RIGHT, e.g. waiting a long time after seeing the initial ‘book flight’ to make that arc. The
useful features could be inaccessible to a classifier. A variant, called ‘arc-eager’ seeks to improve
things. It has slightly different definitions and one more operation:

• SHIFT = (as before) move a word from the buffer to the top of the stack; αw|xβ⇒ αwx|β

• LEFT-ARC-label = top of buffer is parent of top in stack; add label; top of stack is popped;
αw|xβ⇒ α|xβ; w← x

• RIGHT-ARC-label = top of stack is parent of top in buffer; add label; shift buffer to stack;
αw|xβ⇒ αwx|β; w→ x

• REDUCE = pop the top of the stack; αw|xβ⇒ α|xβ

The heuristics for converting from a tree to an instruction are;

• if the top of the buffer is parent to the top of the stack, do LEFT;

• if the top of the stack is parent to the top of the buffer, do RIGHT;

• if the top of the stack has an assigned parent and no unassigned children, REDUCE

• if it can be done, SHIFT

Here’s how the parse goes under arc-eager:

6

ROOT book the flight through houston RIGHT ROOT→ book
ROOT book the flight through houston SHIFT
ROOT book the flight through houston LEFT the← flight
ROOT book flight through houston RIGHT book→ flight
ROOT book flight through houston SHIFT
ROOT book flight through houston LEFT through← houston
ROOT book flight houston RIGHT flight→ houston
ROOT book flight houston REDUCE
ROOT book flight REDUCE
ROOT book REDUCE
ROOT Done

4.1.1 Neural Dependency Parser

An excellent application of neural networks to dependency parsing is the work of Danqi Chen
(student of Manning, now professor at Princeton) from 2014 (ancient history!). It’s pretty straight-
forward and still uses hand-engineered features; the trick is that it uses a lot of them, and the neural
network takes care of the smoothing. The features are:

• the first three words on the stack and the buffer (and their POS tags) (12 features)

• the words, POS tags, and arc labels of the first and second leftmost and rightmost children
of the first two words on the stack, (24 features)

• the words, POS tags, and arc labels of leftmost child of the leftmost child and rightmost child
of rightmost child of the first two words of the stack (12 features)

Collobert et al. (2011) pretrained word embeddings were used; the rest were learned. A n3

activation function is used (quite unusual nowadays but Chen was writing her code all by hand).
The parser scored 90.7 LAS and 92.0 UAS on the converted treebank, a SOTA for the time. It was
also much faster than other parsers; this was in large part due to a lot of precomputation of values.
The latest (2019) using BERT/XLNet is around 95.7 LAS and 97.2 UAS.

4.2 Chiu-Liu-Edmonds
Shift-reduce parsers have a major flaw; they can’t handle non-projective trees. For English this
isn’t a problem; over 99.4% of the English (and 100% of the Chinese) Treebank is projective. But
for Czech this would be a problem. Another algorithm, called Chiu-Liu-Edmonds, after its simul-
taneous creators, can be used instead. It’s a fairly elegant algorithm but unless there’s great demand
I’ll leave it to you to research (e.g. https://www.cs.cmu.edu/˜sswayamd/talks/cle.pdf,
https://user.phil.hhu.de/˜waszczuk/teaching/depparse-su18/exercises/session_

5/example.pdf)

7

