
Distributional Feature Representations

Jonathan May

September 13, 2024

1 Where did those features come from?

In the last notes, we started with f, but nothing much was said about where f (the features)
came from except I made allusions to hand-defining the features much as was done for linear
models. However, a very simple feature template definition could be ‘these are the words
that appear in the input’ (e.g. a bag of words). This is in keeping with the idea of being
less prescriptive about the feature templates and allowing the data to speak for itself. Let’s
say we do this for the first (k) words in the bag. That is, the first d/k features represent the
identity of the first word, and so on until the last d/k represents the kth.

What should each of those d/k features be? If we considered every word to be distinct
from every other word we could create a one-hot vector such that each word is orthogonal to
each other, but that seems intuitively incorrect and would make it very hard to learn. This
would also make d very large – for each word there would be V (vocabulary size) features,
most of which are 0 (a ‘one hot’ vector). Intuitively it would be nice if we had a fixed set of
features for each word, such that words that are similar are close to each other (where ‘close’
means ‘cosine of the angle between their vectors is small’). Otherwise ‘cat’ and ‘feline’ are
as different from each other as ‘cat’ and ‘rutabaga.’

1.1 Distributional Methods

One way to understand word similarity is by thinking about collections of how words are
used and making (perhaps by hand) graphs that relate ‘is-a’ relationships (e.g. ‘yellow’ and
‘red’ are each kinds of ‘color’) or ‘part-of’ relationships (e.g. ‘wheel’ and ‘transmission’ are
part of ‘car’). Another is by top-down properties (e.g. part of speech, number, language of
origin, age). A different way to understand word similarity is based on a famous quote by
linguist John Rupert Firth (1957): “You shall know a word by the company it keeps.” That
is, words are similar if the words they are near in large collections of text are similar. This
is known as the Distributional Hypothesis! We will use co-occurrence to obtain features.
Further more, we’ll do so in a way so that the number of features we have is much smaller
than our vocabulary.

Intuition from Zelig Harris (another linguist) in 1954: “oculist and eye-doctor occur in
almost the same environments...thus we say they are synonyms.”

Here’s another example:

1

A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

What do you think tesgüino is?

1.2 Word co-occurrence matrices and mutual information

Let’s try this first, comparing documents and words:

Notice the usage patterns of ‘fool’ and ‘clown’ vs ‘battle’ and ‘soldier.’ Notice also the
similarity of some of the plays.

Important difference from thesaurus-based approaches now; we’re losing the ability to
distinguish between senses of the same word form (there are ways to try to get these back
but we won’t cover them here and the ‘hard decision’ approach doesn’t work that well...but
we will revisit this when we discuss contextualized representations).

We can also make such a table for smaller contexts, such as a four-word window.

aardvark computer data pinch result sugar
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

In this table the number of times a word in the column was seen within four words of
the word in the row is listed in the cell.

In reality this table is |V | × |V | but the vast majority of cells are 0 (very sparse). Notice
again how similar words have similar vector patterns.

This is so because of two co-occurrence phenomena:

• Syntagmatic (first-order) association (surface similarity): sets of words all occur near
each other, somewhat interchangeably. E.g. ‘wrote’, ‘book’, and ‘poem’ all tend to
occur near each other so they are likely to have similar patterns (example: “Whether
a book or a poem, what Jane Austen wrote will live for generations.”).

• Paradigmatic (second-order) association (paradigm similarity): words don’t necessar-
ily occur near each other but nevertheless do have similar neighbors. E.g. ‘wrote’,
‘said’, ‘remarked’ all share a ‘paradigm’ of words they occur near. Example: “The

2

candidate remarked that the troops were important.” “The candidate said he valued
the importance of the troops.” “The candidate wrote that the troops mattered a lot
to him.”

It has been observed that a narrow co-occurrence window (1-3) will tend to give words
with similar syntactic properties more similar vectors and with a wider window (4-10) more
semantic and not necessarily syntactic similarity. Think ‘orange/apple/lemon/carrot’ for
the former and ‘kill/death/killing/killed’ for the latter. These are not hard and fast rules.

Not all co-occurring words are equally informative! Consider ‘the’ and ‘of’ which occur
many times very frequently with other words. It’s better to ask which words are particularly
informative. Specifically, if words occur more frequently than they do by chance, this is
interesting to us1. We specifically define pointwise mutual information for words w1, w2:

PMI(w1, w2) = log2
P (w1, w2)

P (w1)P (w2)
(1)

If w1 and w2 are IID, we’d expect P (w1, w2) = P (w1)P (w2). If this is so, then PMI = 0. If
the words co-occur more likely than expected, i.e. P (w1, w2) > P (w1)P (w2), then PMI > 0.
If they occur less frequently PMI < 0. This last element is often ignored; we don’t really
know what it means to be some degree of ‘unrelated’ plus the resolution needed to detect
events less likely than the product of two events necessitates very large corpora. Typically
we instead study positive pointwise mutual information:

PPMI(w1, w2) = max(log2
P (w1, w2)

P (w1)P (w2)
, 0)

Here’s a worked example. Using the table above of frequency counts fij for word i in con-
text of word j, we can calculate joint probability, word probability, and context probability,
as:

pjoint(i, j) =
fij∑

w

∑
c fwc

pword(i) =

∑
c fic∑

w

∑
c fwc

pcontext(j) =

∑
w fwj∑

w

∑
c fwc

p(w, c) p(w)
computer data pinch result sugar

apricot 0 0 .05 0 .05 .11
pineapple 0 0 .05 0 .05 .11
digital .11 .05 0 .05 0 .21
information .05 .32 0 .21 0 .58

p(c) .16 .37 .11 .26 .11

1See also TF*IDF, another way to formulate the same idea

3

PMI(information, data) = log .32
.37×.58

= .57

Here are all PMIs:

computer data pinch result sugar
apricot 0 0 2.25 0 2.25
pineapple 0 0 2.25 0 2.25
digital 1.66 -.56 0 -.07 0
information -.8 .57 0 .47 0

To get PPMI, replace the negative values with 0.

1.3 Cosine similarity

A nice number for characterizing the closeness of two vectors is the cosine of these vectors.
Each word is represented as a vector in |V |-space. If the angle they make is small, the cosine
is close to 1. Cosine is just a normalized dot-product. Simple dot product isn’t a great way
to calculate closeness, because longer vectors (i.e. with high values in some dimensions) will
lead to larger dot product. Cosine normalizes this:

cos(a, b) =
a · b
|a||b|

where

|x| =
√∑

i

x2
i

1.4 Neural(-inspired) distributional representations

An issue with PPMI is the vectors are very sparse and the dimensions very large. We
previously saw embeddings were lower-dimensional dense representations of words. We want
embeddings for words to be aware of the contexts in which these words occur. One way to
do this is inspired by the neural networks (multi layer perceptrons) we have already been
looking at. Mikolov’s skip-gram tries to predict the identity of a word given features derived
from another word around it. Specifically, it contains a word embedding matrix E and an
output matrix O but note there is no hidden matrix and no nonlinear function. Given an
input word wi we can look up the features in E by representing wi as a one-hot vector and
multiplying it by E. Alternatively we can just consider Ewi

, the with row of E. If we want
to predict some nearby word wo, the logit for wo is simply (Ewi

)Owo . Given some text,
training data is formed by taking wo to be any word within some range r before or after wi.
An alternative framework called the continuous bag-of-words sums together the embeddings
of context words within r of wi to predict it. In other words, for r = 2, the logit for w is
((Ew−2 + Ew−1 + Ew+1 + Ew+2)O)w.

We still evaluate using cross-entropy as the objective, which comes down to:

4

H(p,q) = −
∑
w′

o

p(w′
o|wi) log q(w

′
o|wi)

But assuming only the observed wo have any probability according to p.2 And then
q(wo|wi) given E and O is:

e(Ewi)Owo∑
w′

o∈V
e(Ewi)Ow′

o

(2)

which is our familiar softmax. Then log q(wo|wi) is

Ewi
Owo − log

∑
w′

o∈V

e(Ewi)Ow′
o (3)

Unlike in the MLP examples we worked with before, where we had a small number of
output label classes, here V can be very large (200,000 is not uncommon if we’re just talking
about space-separated word types).

A trick that avoids having to calculate this huge denominator is negative sampling.3

Consider the question ‘did wi, wo appear in proximity in the data set?’ We can try to build a
model of this by letting the score of the comparison of some wi, wo be precisely the Ewi

Owo

we’re already calculating. We can further imagine a two-class problem, class 1 if the answer
is ‘yes’ and class 0 if it’s ‘no.’ The sigmoid function σ(x) = 1

1+e−x = ex

ex+1
is softmax for two

variables.
Let’s optimize for class 1 for observed pairs and class 0 (= 1−σ(x)) for unobserved pairs.

Further, for every observed pair, we can sample some k4 random words, drawn according to
the unigram distribution raised to 3/4 power. Our objective is then:

log σ(wi, wo) +
∑

w′
o∈R

log(1− σ(wi, w
′
o))

2Strictly speaking these wouldn’t be one-hot, but we can consider them all in one batch and then nor-
malize, or we can consider a distribution of n context items with 1/n probability for each.

3Originally from https://arxiv.org/abs/1310.4546 but see also explained in https://arxiv.org/

pdf/1402.3722.pdf.
4In practice, from 5–25

5

where R is the sample set. It is basically the same as the above but with binary softmax
and a much smaller summation.

These models, along with some techniques for training them very quickly, are known
collectively as Word2Vec (w2v). Some nice properties observed with them is that one could
do vector math; the vector formed by subtracting big-biggest is very similar to that formed
from small -smallest. To this end, the W2V authors created an analogy test set. To evaluate
vectors, you consider an analogy like “brother:sister::grandson:granddaughter.” You calcu-
late grandson+(sister -brother). If the closest embedding to that vector is granddaughter the
relationship has been captured. The relationship types are shown below, as are some results.

The last SOTA results I have seen on this test5 were 74.0 on semantic accuracy and
60.0 on syntactic accuracy, in 2015. The task was not a major focus after that, perhaps
because neural language modeling became more of interest. Additionally, this method of
analysis has attracted a great deal of criticism.6 Further, it was shown that the relationships
between gender-specific roles like ‘king’ and ‘queen’ extended to historical tendencies such
as affiliating ‘homemaker’ and ‘nurse’ with ‘female’ and ‘maestro’ or ‘protege’ with ‘male’.

5From USC: https://aclanthology.org/W15-1513.pdf
6https://aclanthology.org/2020.conll-1.29/

6

