
HW1: Linear Classifiers

CSCI 662: Fall 2024

Copyright Jonathan May, Elan Markowitz, Alexander Spangher. No part of this
assignment including any source code, in either original or modified form, may be shared or

republished.

out: Sep 2, 2024
due: Sep 20, 2024

This assignment is about writing two (or more) linear classifiers and testing them out on multiple kinds
of classification tasks. While the key models should not be difficult to implement, expect to spend some
time setting up the general framework and considerable time investigating different classes of features that
will be applicable for each of the tasks.

Code To Write

1. Write a trainer for at least a Naive Bayes model and a Logistic Regression model (you can also try
a Support Vector machine and/or Perceptron model), in Python. We have provided stub code for a
trainer called train.py. It displays its invocation and brief help when invoked as python train.py

-h. The program takes the following options:

• -m [nb, lr, ...] to specify which kind of model you are training

• -i <inputfile> to specify a training file to be read. Training files will be in the form <text>TAB<label>,
i.e. a line of text (that does not contain a tab), a tab, and a label.

• -o <modelfile> to specify a model file to be written

It can take other options, too, such as specifying hyperparameters, a dev set so that held-out loss can
be displayed, etc.

2. Write a classifier that takes in a model and unlabeled data set and labels it. We have also provided
stub code for a classifier called classify.py. It should display its invocation and a brief help when
invoked as python classify.py -h. The program should take the following options:

• -m <modelfile> to specify the trained model file to read (i.e. the output of train.py)

• -i <inputfile> to specify a test file to be read. Test files will be in the form <text>, i.e. a line
of text that does not contain a tab. For each line, a label should be predicted.

• -o <outfile> to specify an output file to be written. The output file should contain one label
for each line in the input file.

For pseudocode and more details about classifiers, please refer to the class notes on linear models.

1



Coding Requirements

• The classifier should be able to handle words that haven’t been seen before (i.e. OOV). You could
do this in a variety of ways or even try multiple ways and compare their effects (e.g., using BPE vs.
simple smoothing and OOV handling).

• The classifier should not need to know anything about the training method used by the model. However,
the model file can (and should) contain information about how to generate features, as well as feature
weights.

• The trainer/classifier should be multi-class, not binary, and should generate actual class labels. As-
sume all classes are seen during training and save the label info in the model file.

• In your writeup, discuss different feature sets you tried and the different scores you got on your own
internal test set and on the blind validation set (on Vocareum).

• Submit train.py, classify.py, any other code needed, and at least eight model files, as discussed
below.
The files should be named [nb, lr].[questions,products,4dim,news].model.

• Make sure the Vocareum auto-scoring script runs and gives reasonable results. You may also try
running alternate models interactively on Vocareum. Some larger models may not run but baselines
definitely should! We’d like to try these out so please provide instructions for trying the models you
most want to demonstrate by creating a usable README file.

Coding Recommendations

• Structure your code with a getFeatures function inside a Features class (you could subclass this class
in order to more flexibly try out features) that returns a vector of features for each input sentence.

• The model file should contain feature weights and a Feature instance so it knows how to process new
sentences and how to calculate the model cost.

• Write a score file that takes two output files and produces an accuracy so you can test your scores
without having to submit to Vocareum.

• For each data set, save a small portion off to use as development and another small portion to use as
test before submitting for blind test.

• Try different feature sets! First, try to optimize on one of the tasks, then see how that generalizes to
other tasks. Can you find one feature set that is reasonably good for all tasks? (Note: you don’t need
to try to be the super best on all tasks, because that might take you too long. However, you should
probably spend more time on feature sets than on modeling; once you have the basic structure of the
trainer/classifier, the model learning should be pretty easy.)

• The “4dim” data set can be broken down into two independent binary predictions. Optionally, try
making those predictions independently, or even conditionally.

Data

We have provided several different classification tasks with the following datasets:

• products: Very variable length lines of various kinds of English product reviews that are either positive
(pos) or negative (neg). There are 32,592 labeled reviews used for training and 1,000 reviews for
validation.

2



• 4dim: English reviews of variable length that are positive or negative and truthful or deceptive (pos.tru,
pos.dec, neg.tru, neg.dec). There are 1,560 labeled reviews used for training and 40 reviews for valida-
tion.

• questions: Questions to be classified into 6 categories: abbreviation, entity, description, human,
location, and numeric value. The language of the questions is uncertain; before undertaking the
arduous hand-transcription of this data, we noticed a faded label that said “ufvytar” on the library
archive box. But there’s something mysterious about this data...

• news: News sentences, each classified according to the discourse role (i.e. functional, connective role)
that each plays in the document. There are 9 categories of discourse labels: main, main consequence,
cause specific, distant evaluation, cause general, distant expectations consequences, error, distant historical,
distant anecdotal. Your task is to classify them on a sentence level, but this should be done with extra-
sentential context (i.e. information that exists outside the sentence you are labeling, such as information
about previous sentences). Can you think of a way to incorporate information about other sentences
in the document into your classifier?

All datasets can be found on Vocareum in work/datasets where train labeled files are named [4dim,

questions, news, products].train.txt whereas validation files are hidden from your view as auto-
grading scripts will automatically run your classify.py code with your trained models on the validation
on our end; when you submit if you provide trained model files called [nb,lr].[questions,products,4dim

,news].model, we will test your models on hidden files and return a score for each model. If this score differs
greatly from your expectation, you may a) be overfitting, or b) have some design flaw in your code structure
(e.g. hardcoded assumptions). You can submit any models you want and name them how you choose, but
you should have at least one nb. and lr. model file for each data set.

Your Report

Your report should at a minimum:

• Explain the key differences in the methods you used

• Justify your choice of features (include citations where relevant; you do not need to cite instructor
notes or lectures) when optimizing for one task and/or when trying to generalize over many tasks

• Where relevant, show learning rates and discuss overfitting and loss convergence. Use graphs and
tables appropriately, not superfluously. This means the graphs/tables should emphasize the message
you are delivering, not simply be in place without thinking about why you are using that particular
medium to convey an idea.

• Discuss: How do different properties of the different data sets affect performance? Apart from different
categorizations, do the size, genre, and domain of the data matter? How so? How do different models
perform differently?

Use the ACL style files: https://github.com/acl-org/acl-style-files
There are many ways to write and compile LATEX; I generally use Overleaf (www.overleaf.com) for

minimal headaches, but I have colleagues who abhor Overleaf and greatly prefer to compile on their own
machines. Do what works for you.

Your report should be at least two pages long, including references, and not more than four pages long,
not including references (i.e. you can have up to four pages of text if you need to). Just like a conference
paper or journal article, it should contain an abstract, introduction, experimental results, and conclusion
sections (as well as other sections as deemed necessary). Unlike a conference paper/journal article, a complete
related works section is not obligatory (but you may include it if it is relevant to what you do).

3

https://github.com/acl-org/acl-style-files
www.overleaf.com


Grading

As discussed in class, grading will be roughly broken down as follows:

• about 50% – did you clearly communicate your description of what you implemented, how you im-
plemented it, what your experiments were, and what conclusions you drew from them? This includes
appropriate use of graphics and tables where warranted that clearly explain your point. This also
includes well-written explanations that tell a compelling story. Grammar and syntax are a small part
of this (maybe 5% of the grade, so 10% of this section) but much more important is the narrative
you tell. Also, a part of this is that you clearly acknowledged your sources and influences with an
appropriate bibliography and, where relevant, cited influencing prior work (you do not need to cite
instructor notes or lectures).

• about 20% – is your code correct? Did you implement what was asked for, and did you do it correctly?

• about 20% – is your code well-written, documented, and robust? Will it run from a different directory
than the one you ran it in? Does it rely on hard-codes? Is it commented and structured such that we
can read it and understand what you are doing?

• about 10% – did you go the extra mile? Did you push beyond what was asked for in the assignment,
trying new models, features, or approaches? Did you use motivation (and document appropriately)
from another researcher trying the same problem or from an unrelated but transferrable paper?

‘Extra Mile’ ideas

This is not meant to be comprehensive, and you do not have to do any of the things here (nor should you
do all of them). But an ‘extra mile’ component is 10% of your grade. Doing something more innovative
(though well-reasoned) than what is listed here will be better than doing exactly what is written here, and
doing a correct implementation with a thorough analysis will be better than an incorrect implementation or
a trivial analysis.

• Add in the perceptron model and/or SVM and compare to the others.

• Use some out-of-the-box pretrained models, e.g. BERT or out-of-the-box frameworks, e.g. LSTMs or
Transformers. See below for restrictions on the use of libraries and pretrained models.

• Add additional data to train your models.

• Once you are done with your primary models, compare your implementations to ’off the shelf’ imple-
mentations. Are there any differences in speed and/or performance? Can you determine what accounts
for these differences?

• Dig into the ACL archives and find ideas for feature sets, try them out, and analyze performance.

Rules

• This is an individual assignment. You may not work in teams or collaborate with other students. You
must be the sole author of 100% of the code and writing you turn in.

• You may not look for solutions on the web, or use code you find online or anywhere else.

• You may not download the data from any source other than the files provided on Vocareum, and you
may not attempt to locate the test data on the web or anywhere else.

4



• You may use other external data that is not the training/test data provided, and you can make
modifications to that data as needed, but you must document the data and modifications in your
writeup. For the core assignment (i.e. not the ‘extra mile’ component) you may not use externally
trained models such as BERT or GPT.

• For the core assignment (i.e. not the ‘extra mile’ component), you may use packages in the Python Stan-
dard Library (including numpy). You may not use any other packages (e.g., scikit-learn, Keras,TensorFlow,
or other machine learning libraries).

• You may use external resources to learn basic functions of Python (such as reading and writing files,
handling text strings, and basic math), but the extraction and computation of model parameters, as
well as the use of these parameters for classification, must be your own work.

• Generative language, code, and vision models (e.g. ChatGPT, Llama 2, Midjourney, Github Copilot,
etc.; if you are unsure, ask and don’t assume!!) can be used with the following caveats:

– You must declare your use of the tools in your submitted artifact. If you don’t declare the tool
usage but you did use these tools, we will consider that as plagiarism.

– For code and image generation, you must indicate the prompt used and the output generated.

– For text generation you must provide either a link to the chat session you used to help write
the content or an equivalent readout of the inputs you provided and outputs received from the
system. You will lose credit if “the AI” is doing the work rather than you.

• Failure to follow the above rules is considered a violation of academic integrity and is grounds for
failure of the assignment or, in serious cases, failure of the course.

• We use plagiarism detection software to identify similarities between student assignments, and between
student assignments and known solutions on the web. Any attempt to fool plagiarism detection, for
example the modification of code to reduce its similarity to the source, will result in an automatic
failing grade for the course.

• If you have questions about what is and isn’t allowed, post them to Piazza!

5


