
Information Retrieval and Question Answering

Jonathan May

October 20, 2024

1 Information Retrieval

You can take entire courses on information retrieval (e.g., CSCI 572, Stanford’s CS 276), and
it’s not always considered the same thing as NLP, but it’s a general problem which question
answering (QA) is an instance of, and QA is squarely an NLP task.

IR is probably the NLP application you use most often and the most commercially
successful NLP application – search (like web search) is an IR problem. The general idea is
that you have a (very large) collection of documents that for our purposes, you can think
of as text strings, usually paragraphs or more long. You then have a query, which is a short
phrase, natural language of some sort, that indicates the kind of document you’re looking
for. In general, the task of IR is to rank all the documents in order based on how much
they satisfy the goals of the query. In practice, all but a small number of documents are
ranked at ∞ and the rest are chosen, so you can think of that as a way of classifying each
document as matching or not.

1.1 IR evaluation methods

Generally, we have a set of held-out queries and documents, along with annotations of
documents that are relevant for each query. The document set is typically very large and
the relevant document set for a query is much smaller than the background data. It also is
generally not a perfect recall since this would require checking every document in a collection
(background assumed not to match).

1.1.1 Precision and Recall @K

Standard precision and recall seem valid, but as there are multiple relevant documents per
query, we must consider how many documents we are allowed to return.

Precision@K = You got N queries and for each query, K docs. Now, if you have a total
of H relevant documents, then P@K = H

NK
.

Recall@K = You got N queries and for each query, K docs. Out of these NK docs, there
are H relevant documents, then R@K = H

All relevant documents
. If overall more than K relevant

docs exist you can’t get 100%.
None of these take the position in the K you return into account.

1

1.1.2 Mean Average Precision (MAP)

Consider a ranked list of documents per query. Take the average of precision over several K.
Example for K of 5, with 3 hits:

• 1/1/1/0/0 = 1
5
(1 + 1 + 1 + 3

4
+ 3

5
) = .87

• 0/0/1/1/1 = 1
5
(0 + 0 + 1

3
+ 2

4
+ 3

5
) = .2867

That’s the Average Precision. Take a mean across all queries, and you get MAP = Mean
Average Precision.

Other metrics that you can look up:

• nDCG (Normalized Discounted Cumulative Gain) – Take how relevant a document is
into account and penalize for being lower on the list

• MRR (Mean Reciprocal Rank) – For a query, if the first relevant hit is at position r
in your list, score 1

r
. Average across all queries.

• User results – From clicks, eye-tracking, rarely from reported relevance results.

1.2 Vocabulary Models

I’m sure you’re thinking, ‘ok, this is going to be old stuff and then we’ll see the neural stuff
that works much better.’ In a way, this is true, but if you’re searching for something very
specific, just making sure the words you search for are matched is better than the more
‘semantic’ neural methods and so (we think) some form of these exact match approaches are
still employed in commercial search.

1.2.1 Not Covered

• SQL

• Other logical forms (how to exclude something)

1.2.2 Inverted Index Lookup

The straightforward approach is ‘if the words of the query are in the document, return the
document.’ This is often what I want from, say email. Like, I know there was an email
about when this class was held in 2020, So I would search csci 662 fall 2020 schedule

and hopefully, I’d find the email that has those words in it.
Complications:

• What if the email says cs662 (tokenization)?

• What if the email says autumn (synonym)?

• What if the email says schedules (normalization)?

2

• What if I have 25 million emails to look up? (scalability)?

To solve the first three, you do some standard document preprocessing. To do the last,
you use an inverted index. For each term in the vocabulary, you save a list of documents in
sorted order that have that word. Then, you can easily do an intersection.

(example from Chris Manning’s slides)
t1 : 2→ 4→ 8→ 16→ 32→ 64→ 128
t2 : 1→ 2→ 3→ 5→ 8→ 13→ 21→ 34

Algorithm 1 Intersect

Require: sorted queues/min heaps v1, v2
Ensure: a contains the elements common to both v1 and v2
a← {}
while v1 ̸= () and v2 ̸= () do

if v1.head = v2.head then
a← a ∪ {v1.head}
v1.pop()
v2.pop()

else if v1.head < v2.head then
v1.pop()

else
v2.pop()

end if
end while

1.2.3 TF-IDF

If all your query words match the document, then you have a match, but if only some of
them match, then what? Should it just be most of them that match? No, all words are not
equally relevant. Intuitively, content words matter more. So, how do we quantify this?

Term Frequency is an important characteristic. If a word you search for occurs 10
times in document 1 and 1 time in document 2, it’s probably more important in document
1. But is it 10 times more important? Probably not, so the rule of thumb is, for term (word)
t occurring f times in document d, the term frequency rate tft,d is:

tft,d =

{
log10(1 + f), if f > 0

0, otherwise

Why add 1? Because the log of 1 is 0, which would be awkward. Why set it to 0 if t doesn’t
exist? Because the log of 0 is undefined, which is even more awkward. Practicalities!

Term Scarcity is also important! What a contradiction! But it’s true – if your query is
‘the yankees’, it’s much more important to match ‘yankees’ than ‘the.’ Let N be the number
of documents in your collection. Let d be the number of documents the term t appears in.
Then the inverse document frequency rate idft is:

3

idft = log10(
N

d
)

This only really matters for queries with more than one term, of course. But we weight
a term t by tf.idft,d = tft,d × idft and can represent the score for a query-document pair as
the sum of the tf.idft,d for all t in both query and document.

1.2.4 BM25

BM25 is a fancier version of TF-IDF that doesn’t punish documents for being short. SotA
for lexical retrieval and better than you might think.

BM25t,d = idft ·
f · (k + 1)

f + k · (1− b+ b · |d|
average length of all documents

)

k and b are hyperparameters, typical values for them are: k = 2 and b = 0.75.

1.3 Dense Vector Models

Of course, these methods only work if you have an exact match of some terms. We tried to
avoid mismatches with tokenization, normalization, and stemming, but we still might not
guess the exact words. So, you guessed it, we can try using sequence representations, where
it’s assumed that two sequences that are similar will have a small cosine distance (note we
are relying on the semantics to be pretty much only synonymy.) This is sometimes lumped
under the term “Dense Passage Retrieval”

1.3.1 Transformer (cross-encoder) Approach

Since we do have lots (hundreds of thousands of examples) of training data, we could just
use BERT, right? We would encode the query, a [SEP] token, then the document text, and
learn a binary classifier to predict whether the document matches the query.

Would this work? Yes and no. This approach will give good performance on lots of IR
corpora, but in order to use it you have to pair each query with each document. At web
scale that’s impossible.

1.3.2 Bi-encoder Approach

A lighterweight approach uses two (hence bi-) encoders, one to encode all the documents
and one to encode the query. At training time, you optimize to maximize dot product/min-
imize cosine distance of the query and its matching documents; you can have two separate
encoders (perhaps BERT-based), one that gets optimized jointly, and lots of other variants
are possible, too. At inference time, you take your entire corpus and encode it, then for each
query you get the nearest neighbors. There are some really fast approaches for this; I like
the Faiss library.

4

1.3.3 late stage interaction

A popular approach is ColBERT, which does not consider queries or documents to be single-
sized vectors but rather considers each contextual token representation individually. To
determine the similarity between a query and a document, for each token in the query, the
contextual token in the document that is closest is identified. The maximum similarity for
each query token is then summed. Doing this for every document would be infeasible, so
typically in a first pass, for every query token, the maximum matching contextual token
for any document is obtained, then, in a second pass, only the documents corresponding to
initial maximum matches are returned.

1.4 Training

It’s not sufficient to hope that a query and matching document will be together in the
semantic space. They may not be actually semantic similar so we have to train them to
exhibit this behavior. This is generally framed as a multi-class classifier problem: given a
query, which of n documents is preferred?

L = − log
exp(sim(qi,pi)/τ)

exp(sim(qi,pi)/τ) +
∑m

j=1 exp(sim(qi,nj)/τ)

for queries q, positive docs p, negative docs n. similarity is typically cosine but other simi-
larities have been tried.

This can also be viewed as contrastive learning. But to do this we need examples.
Typically datasets such as MSMARCO have queries, large document ‘haystacks’, and one
or more selected docs from the haystacks that are ‘needles’ or positive results. But we can’t
have all other docs to be negative; its too many. so which to choose?

If we assume all non-positive docs are negative, an easy and efficient approach is ‘in-batch’
sampling. Per training batch, all the rows that are not your row are considered negative. So
you can efficiently access them for negative choices with a little creativity.

But most negatives are very obviously negative. It’s more effective to find so-called ‘hard
negatives’ for each query to make for a more effective classifier. Where to get them from?
You can use a weaker IR engine such as BM 25 or in-batch-trained DPR. After building
the weaker system, predict documents for your training queries. Documents it returns that
are not labeled as positive can be taken as hard negatives. Of course, a concern is that in
actuality, not all positive associations are ever recorded in any training data set. Thus, the
retrieved “hard negatives” may, in fact, be simply unlabeled positives. If this happens too

5

often, you can actually make your new system worse because it will be too confused, having
trained on mislabeled examples.

2 Question Answering

Question Answering (QA) is a special kind of IR where the query is posed in the form of
a question, and rather than a document, we typically want a fact (that often comes from a
document).

2.1 Open Domain QA

If there’s a big document collection you can treat the problem like IR, at least at first.
Simply(?) rephrase the question as a query (e.g. ‘What is the capital of New York’ → ‘New
York capital’), then retrieve matching documents, then proceed as if you’ve been given the
passage, as described below.

Or we can make things a little easier by just providing the document. That is often what
is done; see the list of datasets (section 2.5) below.

2.2 Extractive Factoid QA

Now that you have a document, we need to whittle it down to find which sentence contains
the answer. Here, a single BERT model might actually work – encode the question and each
sentence, and binary classify. The scale is not so big.

Finally, we need to find the actual passage. An IE or other span-based model simply
needs to find the beginning and the end of the selected sentence. Assuming nothing has gone
wrong, you now have your answer!

2.3 Abstractive QA

What if the exact answer isn’t in the text but a reasonable person could figure it out? What
if we just want to train a big model with a lot of text and ask it questions? GPT-3 can do
that, as can T5, which is an encoder-decoder model trained using the paradigm in the figure
below.

6

2.4 Classic Approach

QA is really old and the classic approach is a pipeline of multiple systems. Even now those
pipelines can often outperform slick neural models. Here’s a brief list of the steps:

• Figure out the answer type (Is ‘Which US state capital has the largest population?’
asking for a number, a state, or a city?)

• Figure out the focus (what words in the question should be replaced by the answer?)

• Based on the answer type, extract entities of the correct type from the retrieved doc-
uments

• Rerank all the candidate answers

Something like this was used by Watson to beat experts like Ken Jennings in 2011. There
is current work on doing well in “quiz bowl” environments where context information and
the question itself are progressively revealed and answering early yields more points.

2.5 Datasets

• SQuAD (Stanford Question Answering Dataset, 2016) – Annotators took passages from
Wikipedia, then made up questions whose answers were in the passages. SQuAD 2.0
(2018) also includes unanswerable questions – 150k total questions. If you include the
passages it’s extractive QA, if you throw them away it’s open-domain with wikipedia
as the document corpus.

• HotpotQA (2018) – Take several documents and make a question that you need to
read and reason from all of them to make a decision. Requires multi-hop reasoning.

• TriviaQA, Natural Questions (2017, 2019) – Were written by trivia people/google users,
and also include contexts with the answer, but weren’t written by unconsciously biased
annotators.

7

• TyDi QA (typologically diverse) (2020) – 204k QA pairs from 11 different languages.

3 Retrieval Augmented Generation (RAG)

Although largely based on a paper from 2021,1 in 2023 (and beyond) RAG is very popular
due to the hallucination crisis observed in ChatGPT. The key idea here is to combine both
retrieval and generation so that generated information is based on actual retrieved documents
that have some basis in reality. Intuitively, this makes sense. If you are talking with someone
and they ask about something fact-based that you don’t know the answer to off the top
of your head, you might go look it up (in an encyclopedia, online, etc.). Having read
the document, you can then express the right information based on the context of the
conversation. That’s exactly what’s done as depicted below:

The idea is pretty simple: you want to generate y from x, but first, you ask an IR
model for some documents z. Then you generate y in the context of both x and z (literally
concatenate them). Generally, RAG marginalizes over several (top-k) documents Z, so the
likelihood is as follows:

p(y|x) ≈
∑
z∈Z

p(z|x)p(y|x, z)

The query and document encoders are BERT models and the generator is a BART model.
In the original paper, the query encoder and the generator are fine-tuned, but the document
encoder isn’t since that would require re-encoding the document corpus (Wikipedia) at
each step. In current RAG systems, nothing is fine-tuned since the models are all too big,
so essentially RAG is just a paradigm for generation – include retrieved documents when
generating (and then possibly do a more complicated joint decoding or rerank candidate
outputs). RAG is actively being investigated in the context of super good generation models
so many innovations are sure to emerge beyond the scope of what is taught here.

1https://arxiv.org/pdf/2005.11401v4.pdf

8

