
Language Models (n-gram)

Jonathan May

September 17, 2024

1 What they are and why they’re useful

A language model is, formally, a probabilistic formal language, i.e., an n-tuple that includes
a vocabulary Σ and contains mapping mechanism Σ∗ → R≥0. Furthermore, the sum of
all (infinite) x = x1, x2, . . . , xn ∈ Σ∗ should be 1. Practically speaking we usually want to
answer the question “What is the probability of the next word?”

We are formally seeking P (x1, x2, . . . , xn) so we can conveniently use the chain rule, insert
start and end tokens x0, xstop, and re-express as:

P (x1, x2, . . . , xn) = P (x1|x0)P (x2|x1, x0)P (x3|x2, x1, x0) . . . P (xstop|xn, . . . , x0)

Why do we care? This can cover both syntax

P (the cat slept peacefully) > P (slept the peacefully cat)

and semantics

P (she studies morphosyntax) > P (she studies more faux syntax)

Furthermore the notion can be generalized beyond a single sentence and model a contin-
uous stream of language.

Language models help us to generate:

• translations

• spelling/grammar corrections

• summarizations

• text recognized from speech

1

Task Input Options Final (post-LM)

spelling correction no much effort

no much effect

so much effort

no much effort

not much effort

not much effort

speech recognition

she studies morphosyntax

she studies more faux syntax

she’s studies morph or syntax

she studies morphosyntax

translation ella se va a casa

she is going home

she is going house

she goes to home

to home she is going

she is going home

These can also be used for prediction (type ‘Where can I’ into Google, or start typing a
text message).

This application comes out of the generative models we looked at before. If we wanted
originally some P (Y |X) this is equivalent to P (X|Y)P (Y)/P (X) where P (X|Y) can be
thought of as a ‘noisy channel’ corrupting unobserved Y into X. Then P (Y) is the language
model the data creator used when generating Y before corrupting it into X, which is what
is seen. (P (X) isn’t needed; we see X, we don’t care about its likelihood). Y could be
anything; it could be a sentiment (but that’s not much of a language) or it could be a tag
sequence, or a language sequence. We’ll increasingly consider cases where it’s a natural
language sequence.

2 N-gram models

Similar to Naive Bayes, we can make an independence assumption, e.g. that: (trigram
model)

P (xi|xi−1, xi−2, xi−3, xi−4) = P (xi|xi−1, xi−2)

And we can estimate these conditional probabilities from data, just like we estimated con-
ditions of word given label, before.

So if you want P (mast|before, the) we can use a corpus (say, Moby Dick) and unix tools
from before:

sed ’s/ /\n/g’ mobydick.txt | grep -v "^$" > md.words

paste md.words.txt <(tail -n+2 md.words.txt) <(tail -n+3 md.words.txt) \

2

| grep -ic "^before\tthe\t"

29

paste md.words.txt <(tail -n+2 md.words.txt) <(tail -n+3 md.words.txt) \

| grep -ic "^before\tthe\tmast"

4

So, 4/29 = 13.8% (at least in nautical novels).

2.1 N-gram as FSA

FSAs are suitable for representing statistical n-gram language models; in fact this was actu-
ally how they were represented (e.g. back in pre-neural speech recognition days); there are
nice properties of FSAs like closure under composition that allow you to chain little pieces
of truth together. Here is an example of a bigram FSA:

START

the

dogs

ran

END

dogs:P (dogs|START)

the:P (the|START)

ran:P (ran|START)

the:P (the|dogs)

ran:P (ran|dogs)

dogs:P (dogs|dogs)

dogs:P (dogs|the)

ran:P (ran|the)

the:P (the|the)

dogs:P (dogs|ran)

the:P (the|ran)

ran:P (ran|ran)

ϵ : P (END|the)

ϵ : P (END|ran)

ϵ : P (END|dogs)

If you had some other constraints (e.g. metrical constraints) you could also encode those
as an FSA and then intersect the two to get, say, a sentence with appropriate meter and
high n-gram likelihood.

2.2 Using N-gram language models

Language models can be used for both evaluation and generation.
For evaluation, imagine we had the following snippet of text and wanted to know its

probability.

3

Call me Ishmael . Some years ago never mind how long precisely

A 3-gram language model would estimate this as P (Call|START,START)P (me|Call,
START)P (Ishmael|Call, me)P (.|me, Ishmael) . . . This could be used when comparing differ-
ent alternatives, as above.

For generation, we proceed as follows: Let’s say you’ve already started with Call. Then
from the set of P (|Call, START), sample a word proportionally to the distribution. E.g. If
we have:

x P (x|Call)
him .179
it .143
of .071
the .071
me .071
all .036
our .036
... ...

You imagine a wheel where him takes up 17.9% of the wheel, it the next 14.3% and so on.
You spin the wheel and choose the word you land on. Let’s say you get it. Then you choose
from P (|it, call) using a new table, and so on. Note that it’s generally not a good idea to
just take the most probable argument, nor is it a good idea to sample uniformly.

2.3 Problems with n-grams: sparsity, (Backoff and Smoothing)
and storage

N-gram language models are of great utility but they have some problems that need handling.
For one thing, they are quite sparse. 99.8% of the 5-grams in Moby Dick, for instance, occur
exactly once1.

What to do? One thing we can do is, as before, smooth. So if “go to sea as the” does
not occur in training (it doesn’t in Moby Dick) we can still add some small amount to each
vocabulary term so we don’t get zero probability for the whole sentence.

But what if “head to sea as a” does not occur because the context, “head to sea as ” does
not occur? Explicitly smoothing every possible 4-gram would explode the memory needed
to represent the language model. We instead (or really, additionally) condition on 3-gram
context and interpolate between the two models, i.e. λP (a|4−gram)+(1−λ)P (a|3−gram).
Even this can be represented as an FSA:

1The three most frequent 5-grams, each occurring four times, are [in the middle of the], [go to sea as a],
and [’ Queequeg,’ said I, ’]

4

Note another problem with n-gram language models is their size. There is a parameter (a
probability) for every n-gram seen in training, plus for some n-grams not seen in training (due
to smoothing), plus all n− k grams for k = 1 to n− 1 (due to backoff). More training data
makes for better language models, but also for larger language models. Lossless (e.g. trie
storage) and lossy (e.g. Bloom filters – a hash function based approach that was sometimes
wrong but with low probability) compression techniques were all the rage until about 2011,
but we won’t discuss them here so we can instead move on to neural language models, which
made these approaches unnecessary.

3 Intrinsic evaluation: Perplexity

There’s no way to conceive of held-out ‘labeled’ data in language modeling. So how are we to
judge the quality of a language model? We hold out some portion of natural language and,
after building the model, ask it what it thinks of the held-out portion (i.e. how probabilistic
it is). Since the held-out portion is a sample of real language, the model should give it a
high probability. Naturally, we wouldn’t expect the probability to be 1, as if the model is
a true language model, it should distributed probability mass across all (generally infinite)
sentences of the language.

It won’t do, though, to have models report probabilities on one particular piece of text
(as there will be overfitting) nor can we compare across different pieces of text, as they
have different sizes. We instead want to report per-word behavior, since although we know
words don’t have equal ‘amounts’ of language (whatever that means) they come as close as
anything else.2 Rather than simply describe the probability per word we use an information-
theoretical approach. Consider cross-entropy, which is used to train logistic regression and
neural models (particularly ones with categorical output, which an LM is an instance of).
The cross entropy being calculated is:

2There is work that measures per-character or even per-byte perplexity but it is less common.

5

H(p̃, q) = −
∑
x∈X

p̃(x) log q(x)

where x is a possible member of language X (i.e. a sentence), p̃ is the ‘true’ distribution
of language, and q is our model’s distribution of language. H, the cross-entropy, measures
the average number of bits (assuming a log base of 2) it takes to properly calculate the
memebrs of X using the suboptimal model q instead of p̃. Think of this as a ‘codebook’
with instructions on how to turn faulty distribution q into the true distribution; H is the
size of the entry of each item in the book. We don’t know the true distribution of p̃, but we
have a sample M of it, so we assume every x ∈ M has probability 1, and everything else has
probability 0. So we can rewrite as:

H(p̃, q) = −
∑
x∈M

log q(x)

Furthermore, we generally predict language one word at a time and we want a metric for
the average ‘goodness’ of our model per word. So we re-cast M as a sequence of words
x1, x2, . . . , x|M | and write the average cross-entropy as:

Have(p̃, q) = − 1

|M |
∑
xi∈M

log q(xi|xi−1, . . . , x1)

Rather than report the average number of bits needed to represent the truth using q
instead of p̃, we instead cast this as the ‘degree of confusion.’ If 5 bits were needed, then a
codebook with words that represent up to 25 = 32 choices are needed, and so we are 32-way
‘confused’ or ‘perplexed’ when we use q. We thus calculate the per-word perplexity as

2Have(p̃,q)

However, this assumes cross-entropy was calculated with a base 2 log, and in general that’s
not what we do; we prefer to use a base of e. So perplexity is in fact usually calculated in
terms of ‘nats’, i.e.

exp(Have(p̃, q))

A really bad language model that predicts each word in V uniformly would get perplexity
of |V |. A really good one would have perplexity of 1.

Let’s try a Shannon game with characters (words are too hard).
Despite using per-word averages it is usually a good idea to compare across common

benchmarks.
The 1m-word Penn treebank with a vocabulary limited to 10,000 types gets 141 ppl using

a good 5-gram model, and under 60 using neural models; here is the latest:3

3https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word, (retrieved
9/8/22)

6

On a larger news-based 1b-word corpus (the billion word benchmark), state of the art as
of 2016 is around 25.4

Progress since then5:

4https://arxiv.org/pdf/1602.02410.pdf
5https://paperswithcode.com/sota/language-modelling-on-one-billion-word, (retrieved

9/8/22)

7

Another common benchmark is wikitext-103 (103m words of training, entire articles from
wikipedia)6

So let’s talk next about the impact of neural networks on language modeling!

6https://paperswithcode.com/sota/language-modelling-on-wikitext-103

8

