
Transformer Language Models

Jonathan May

September 20, 2024

In 2017 some researchers at Google considered whether the recurrent part of RNNs/L-
STMs was really that important at all in neural MT. In the paper ‘Attention is all you need,’
they described their model, Transformer1, which outperformed the state of the art at the
time at a variety of data points and at a lower cost to train.

Within a year or so Transformer models took over most of NLP as they were shown to
be useful as language models and as feature sets for classification and structured prediction
models. All the images in these notes come from others’ papers, lectures, blog posts, etc.
Apart from the original transformer paper, I recommend the illustrated transformer 2 or the
annotated transformer3.

BTW, Transformer is usually presented in the context of machine translation, as it was
used there first, but we’re going to describe it in the context of a language model, so it will
look a little different from other presentations.

1 Base Model

We’re going to cover the details in Transformer in various order, sort of from the outside
in. To begin with, the overall shape is stacks of representations, conventionally of size 6,
with one representation stack per word. To begin with, let’s imagine each block is just
a feed-forward network. Each word is embedded, then at each stage, it’s passed through
nonlinear transformation via ReLU. In fact, there are two linear transformations and one
ReLU at each level. So if x is the embedding (or input from the last layer), the output is
max(0,max(0, xW1 + b1)W2 + b2).

4

1https://arxiv.org/abs/1706.03762
2http://jalammar.github.io/illustrated-transformer/
3https://nlp.seas.harvard.edu/2018/04/03/attention.html
4W1 is (512× 2048) and W2 is (2048× 512).

1

But it’s not that simple. As you might imagine, attention is heavily involved.5 In fact,
each of those cells except the first (which is the embedding) is attention across the entire
input followed by the feed-forward component:

Remember before, we took every previous word’s hidden state, multiplied them each by
a matrix to turn them into ‘comparison’ vectors, then compared them before taking softmax

5It’s called self-attention, to distinguish from the attention between two different languages (cross-
attention) we’ll get to later.

2

to get a distribution? It’s the same thing here but a little more complex and, in a way,
principled.

1.1 Key, Query, Value Attention

As before, if we want to know the attention to some state t, we first transform each state i
by a matrix. We call it the ‘Key’ matrix (K). Different from before, we also transform t by
a “query” matrix (Q). Then tQ(iK)T is the raw score of the influence of i on t; this is done
for every i and turned into a distribution αt by softmax.6

Now, instead of using αt to linearly combine each i, the i (which includes t) are trans-
formed again by a “value” matrix V . These are then linearly combined. That is then fed
to the feed-forward unit. Attention, followed by feed-forward, is one layer, and there were
originally six, but now 12 or more layers is common.

K =


0 0.5 0.5
1 1 0
0 0.5 0.5
1 1 0

Q =


0.5 0 1
0 0 0
0.5 0 1
0 0 0

V =


0.5 1 1.5
0.5 2 0
0.5 1 1.5
0.5 2 0


Then α1 = softmax([2, 4, 4]) = [.06, .47, .47] and the result would be [1.9, 6.7, 1.6].
I think the figure below by Alireza Zareian nicely expresses the calculation for self-

attention; remember, although we did it for one position, in training it can be done for all
positions at once:

6Not quite. Actually it’s softmax(tQ(iK)T√
|K|

), i.e. divide by the dimension of K. This keeps gradients from

getting too small, per notes in the paper.

3

If X is a 5-word input, XQ is the 5 query transforms and XK is the 5 key transforms.
Then XQ(XK)T are the 25 un-normalized weights, each row corresponding to the weights
for a position. Taking row-wise softmax gives the 5x5 table of α. Then V α would give the
result of self-attention at each position

However, if we’re treating this like a next-word-predicting language model7 you can’t
actually attend to the future because it doesn’t exist yet! This isn’t a problem when decoding
but is in practice, when training, so a mask to block the future would be element-wise
multiplied with α:

M =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


1.2 Multi-Head

Self-attention can be viewed as a generalization of convolving kernels used in convolutional
neural networks (CNNs). CNN filters, however, have dimensions tied to the relative offset
of adjacent inputs (words, pixels, hidden units) while the same Q, K, and V are applied to
each input on a layer (different set for source, self-encoder, and self-decoder). Also, CNN
filters do a fixed combination, not a distributional interpolation. But the information sharing
paradigm is very similar.

What are we actually doing when we do self-attention? We are probably combining some
semantic and syntactic coordination.

But there are different aspects of information we might want to attend. It seems odd to
distill them down into a single (Q, K, V) triple. And since we noticed the similarity to CNNs
we can use a technique used in CNNs: multiple filters! Indeed, we actually do attention in
one place many8 times with a different learned (Q, K, V) set for each time; each attention
that is learned is called a ‘head’. Rather than use e.g. max-pooling or mean-pooling as is
often done in CNN, Transformer instead does a linear projection of the heads (Alammar):

7An autoregressive language model because the prediction of a word gives you a new state with which to
predict the next word

8Eight

4

Here is attention all together (Alammar):

1.3 Residual Connections and Layer Norm

In the story we’ve told so far, data enters a layer, is combined with information from all
the other words in the sentence with self-attention, then is projected through a feed-forward
layer. So if we call the input to a layer x and the self-attention and feed-forward sublayers
functions self and ff , the output is ff(self(x)). This seems like a good opportunity for
the information at that position to get lost; self-attention could decide not to attend to the
self! As with RNNs, we can use residual connections ; in each case, we simply add the input
back again after each sublayer. This is only done per-sublayer.

We introduce some sub-results: we calculate x′ = self(x) + x. Then the output is
ff(x′) + x′.

OK, but we don’t actually even use the original x or the other intermediates without
modification either! Instead, we use a technique called ‘layer norm,’ which essentially mod-
ifies each item by subtracting the mean and dividing by the standard deviation over the
vector.9 So in fact x′ = self(norm(x)) + x, and the output is ff(norm(x′)) + x′. This is

9it’s a little more complicated than that but this is already rather in the weeds.

5

not well-described in the original paper but is what has been uncovered post-facto.10

Here’s the whole unit:

We now know almost everything in this handy diagram hacked together from the original
paper:

1.4 Positional Embeddings

We haven’t put any explicit notion of the ordering of the words in yet. So a specific sinusoidal
function is added element-wise to each embedding. Specifically, let

10My former student Thamme Gowda clued me into it; I’m not sure it’s written up anywhere.

6

wk =
1

100002k/d

where d is the embedding dimension. Then for the nth word (0-based), the position
embedding pn at position i in the embedding is:

p(i)n =

{
n× sin(wk) if i = 2k

n× cos(wk) if i = 2k+2

This allows the position embedding for any j+k to be represented as a linear function of
the position embedding for j, so the other elements in the Transformer can take advantage
of this if they need to, and then there is theoretically no limit to the number of tokens that
can be read. Why would this work? Consider representing integers in binary:11

And now compare the periodicity of those columns with the graphical representation of
the vector:

Here is what the position embedding looks like:

11Source for this section: https://kazemnejad.com/blog/transformer_architecture_positional_

encoding/

7

In practice there are other ways to do this, and having an upper bound on length is not
that big a deal, so people have also used a fixed table of learned position embeddings and
other similar approaches.

1.5 Shared embeddings and BPE

One last part of the model: the word embeddings! Or should I say, the word piece embed-
dings. We covered this way in the beginning but it emerged in wide use contemporaneous
with and by Transformer. Specifically, byte-pair encodings (BPE).12 This is a kind of unsu-
pervised word segmentation algorithm that works as follows:

def bpe (merges , vocab) :
for i in range (merges) :
count a l l ad jacen t by tes , e . g .
” four ” = ” f o u r” = ” f /o , o/u , u/r”
mu l t i p l y by count o f word in corpus
pa i r s = g e t s t a t s (vocab)
f ind the most f r e quen t pa i r . l e t ’ s say i t ’ s ”o/u”
best = argmax (pa i r s)
now cons ider ”ou” to be merged . So next time
” four ” = ” f ou r” and in s t ead you count ” f /ou , ou/r”
vocab = merge Vocab (vocab , bes t)

return vocab

You run it as long as you want. Instead of merges you can consider the size of the
vocabulary you want. For Latin languages, the minimum is around 60 (e.g., most of ASCII),
but this means the vocabulary blow up of before is no longer relevant. Furthermore, you can
now more easily understand why it’s useful to combine the embedding tables.

What about different character sets? Well, most people don’t seem to worry about that
because of hegemony. But we (at ISI) do; we have romanization tools that convert all
language data into a common space (latin letters...still pretty hegemonic).

1.6 Model optimization tips

• Batches had 25k tokens (in practice similar length sentences are grouped together for
maximum parallelism with minimal lost work).

• Adam optimizer (SGD with fancy learning rate) plus a fancy learning rate on top of
that

• Dropout! Everywhere in the model, with probability 0.1, treat a parameter as if it was
0. Don’t contribute to the loss, and don’t update on backprop.

12https://arxiv.org/abs/1508.07909

8

