Vision Language Models (VLMs)

Xuezhe Ma (Max)



Outline

e Non-generative VLMs
- Goal: Text/image understanding
- Contrastive-based VLMs
- VLMs from pretrained LLMs

e Generative VLMs

- Goal: Text/image understanding & generation
- Diffusion Models
- Visual tokenization based models



Contrastive-based VLMs

e Example: CLIP

e Data: pairs of images and their captions

» Networks: one text encoder and one image encoder
e Loss function:

eCoSim(Zz‘,Zj)/T
LinfoNCE = — Z log lecv—l cCoSim(z;,2) /7
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VLMs from Pretrained LLMs

« Example: LLaVA

e Data: pairs of images and their captions

e Network: One vision encoder, one mapping network and one LLM
e Loss function: language modeling
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VLMs from Pretrained LLMs

LLaVA
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Generative VLMs
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Outline

e Generative VLMs

- Goal: Text/image understanding & generation
- Diffusion Models
- Visual tokenization based models



Distribution-based Generative Models

e Goal: learn to generate new data from samples
- How?
- To model the data distribution P(X)

e Closed-form analytic solution
e Exact density estimation via “black-box” deep neural networks
e Density/distribution approximation
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Closed-form Analytic Solution

 Providing a closed-form analytic solution of P(X)

- Kernel-based approaches
- Gaussian process

e Pros
- Theoretically grounded
- Analytic solution for future derivations
e Cons
- Limited capacity
- Unable to model complex data/distributions
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Distribution-based Generative Models

e Goal: learn to generate new data from samples
- How?
- To model the data distribution P(X)

e Closed-form analytic solution
o Exact density estimation via “black-box” deep neural networks
e Density/distribution approximation
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Deep Generative Models w. Exact Density Estimation

e Exact density estimation via deep neural networks
- Autoregressive models
- Generative (normalizing) flows

Deep
Generative

=) P(X)

Models Value only!
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256

Problems on Autoregressive Models for Image

256

256 x 256 x 3 = 131072 pixels

Problems:

e One pre-defined order
- No clear order for data like images

 Error propagation
- Limited context at beginning
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Generative (Normalizing) Flows

e Modeling density via invertible mapping

- Directly modeling the joint distribution of all variates in X
- Exact density estimation (no approximation)
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Generative (Normalizing) Flows

X ~ py(X)

Change of Variable formula:

Polx) = Pr

o)

Normal

det

[' ~ Normal(O, 7)

Ofp(x)
0x

Jacobian Matrix
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Generative (Normalizing) Flows
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Generative (Normalizing) Flows: Pros and Cons

e Modeling the exact distribution P(X)
e No auto-regressive factorization

e A large number of layers: invertible function f; is very weak
 Determinant calculation is expensive
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Distribution-based Generative Models

e Goal: learn to generate new data from samples
- How?
- To model the data distribution P(X)

e Closed-form analytic solution
e Exact density estimation via “black-box” deep neural networks
e Density/distribution approximation
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Problems of Exact Density Estimation

e What are the problems of exact density estimation?

- The space of pixels is huge | V| = 256/%Wx3

- The manifold/sub-space of natural images is sparse w.r.t the whole space
|V V] =
- Waste too much model capacity on garbage images/noises
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Variational Auto-Encoders (VAES)

e Learning a (low-dimensional) latent representation
- The manifold/sub-space of natural images is sparse w.r.t the whole space

[V'|/|V] ~0

- After down-project to low-dimension space of Z, natural images are less sparse

EEEEEER]
N

X low-dimensional
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Deep Generative Models w. Approx. Density Estimation

e Variational Auto-Encoders (VAESs)
e Diffusion Models

q(Z|X) posterior

Latent Variables
/

p(X|Z) generator

p(Z)

prior
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e Low-dimensional latent variable Z € |

e Marginal distribution

S22 USC University of
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Information Sciences Institute

Variational Auto-Encoders

d

pX) = J pX|Z)p(Z)dz,
/

e How to compute/approximate the integral?

- Variational Inference
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Variational Inference

log p(X) = logJ p(X|Z)p(Z)dz
_ Z

LL

Evidence Lower Bound (ELBO)
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> E‘q(zmpogp(X\Z)] — KL(g@(Z|X) | |p(Z))
V ["ELBO T~
Generator Prior
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Variational Inference

log p(X) = logj p(X| Z)p(Z)dz
_— V4
LL

Evidence Lower Bound (ELBO) = _azxHogPX 2] = RLG(ZIX)T1p(2))

ELBO

= B, zpllogp(X|Z)] — KL(g(Z| X) | | p(2))

Reconstruction KL Regularizer
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Variational Inference

Evidence Lower Bound (ELBO)

log pyX) 2 By zoflog pX 1 2)] = KL(gy(Z1X)|1p2)

LL ELBO
Posterior
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Variational Inference

Evidence Lower Bound (ELBO)

pyZ )I)

log pp(X) 2 E, 7 1xy[log po(X | Z)] — KL(g,(Z] X) | |
LL ELBO
Posterior Prior

L ~ pyZ)
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Variational Inference

Evidence Lower Bound (ELBO)
log py(X) 2 By zx[10g pX | 2)]| = KL(qy(Z| X) | | po(2))
LL ELBO |
Posterior Prior Generator

L ~ pyZ)




Diffusion Models
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Diffusion Models

e Multi-step hierarchical VAEs
e A chain of latent variables

7.7, ..

Prior:

Posterior:

Generator:

., Z7, Where each Z, has the same dimension of X

P(Zr) ~ N (0.])

T
4Z. 2y, ... 20| X) = | aZ12_). 2,:=X
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Q(Zt‘zt—l) ~ '/’/(\/1 _,Bt ' Zt—laﬂtl)

T
p(X9 Z]a '--9ZT) — p(ZT)Hp(Z[—l ‘Zt)
=1

pZ_1Z) ~ N(u(Z), 2(Z,))

Forward process

Reserve process
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Diffusion Models

e Training Objective
- ELBO (the same as VAEs)

e Sampling
- Reverse process
Ly > L > ... > Lo X
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Diffusion Models

e Diffusion models are good at generating high-quality images
e Learning is slow and expensive
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Latent Diffusion Models

e Learning from pixels is hard

‘L ™ 4
SP'T _: :

e Combining VAE and Diffusion Models
- Stage-|: a latent space VAE
- Stage-ll a diffusion model on top of the latent space

Latent
Reps

VAE

—

Diffusion Model
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Latent Diffusion Models
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Neural Networks in Diffusion Models

Cross Attention

T

Diffusion Generator

Text Encoder

Transformer Encoder U-Net or Transformer
e.g. Encoder from T5 Train from scratch
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Unifying Text and Image in Diffusion Models

Transfusion

i ' |
cute || cat . ||<BOI>|: 5 l . & :“ What || color|| is its

nose ?
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Transformer
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A cute cat . <BOI> . . ‘? ;’i <EOI> What color is its nose
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Unifying Text and Image in Diffusion Models

the word ‘START’ on a A Dutch still life of an A wall in a royal castle. Three spheres made of
blue t-shirt arrangement of tulips in There are two paintings glass falling into ocean.
a fluted vase. The light- on the wall. The one on Water is splashing. Sun
ing 1s subtle, casting gen- the left a detailed oil paint- is setting.
tle highlights on the flow- ing of the royal raccoon
ers and emphasizing their king. The one on the right
delicate details and natu- a detailed oil painting of
ral beauty. the royal raccoon queen.

A transparent sculpture of A chromeplated cat sculp- A kangaroo holding a anegg and a bird made of
a duck made out of glass. ture placed on a Persian beer, wearing ski goggles wheat bread
rug. and passionately singing
silly songs.



Outline

e Generative VLMs

- Goal: Text/image understanding & generation
- Diffusion Models
- Visual tokenization based models
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Visual Tokenization
e Mapping each image patch to a discrete token index
e VQ-VAE
q(Z|X) posterior

Clustering procedure

/

Latent Variables

7
7 p(Z)

prior

p(X|Z) generator
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Chameleon

Visual Tokenization
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Problems of Two-Stage Models

e Losing image information from latent space
e Falling behind non-generative VLMs on understanding tasks

Latent
Reps
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