
Context Free Grammars constituency trees, and CKY

Jonathan May

November 8, 2024

First a little formal language theory
From a formal perspective a language is a (possibly infinite) set of strings (or sentences), where
each string is made up of words from an alphabet (or vocabulary). This definition is amenable
beyond human languages and has been applied to, e.g., computer languages, DNA chains, and
mathematical sequences. Much of formal language theory is concerned with the formal devices
used to represent these languages.

Finite State Automata and Transducers
A weighted finite-state automaton (wFSA) is one such device. It is a 5-tuple M = (Q,Σ, λ, ρ, δ)
where Q = {q1, q2, . . . , qm} is a finite set of states, Σ is a finite input alphabet of symbols, λ : Q→ R
is an initial weight function, ρ : Q → R is a final weight function, and δ : Q × Σ × Q → R is a
transition function. Multiplication of λ for the chosen start state, iterated applications of δ, and ρ
for the ending state yield the weight of the string formed by concatenating the series of Σ elements
produced in the repeated applications of δ. FSAs and their unweighted counterparts have all kinds
of nice properties, such as closure under union, concatenation, intersection, and efficient best path,
and are the mechanisms driving regular expressions.

Here are two simple wFSAs: the first recognizes any sequence of ‘a’ or ‘b’ that is of even
length (for simplicity’s sake, the weights of each member of λ, ρ, and δ can be said to be 1 if the
item appears, and 0 if it does not):

Q1 = {q1, q2};Σ = {a, b}, λ = {q1}, ρ = {q1}, δ = {(q1, a, q2), (q1, b, q2), (q2, a, q1), (q2, b, q1)}
The second recognizes any sequence of ‘a’ that is of length divisible by 3:
Q2 = {q7, q8, q9};Σ = {a}, λ = {q7}, ρ = {q7}, δ = {(q7, a, q8), (q8, a, q9), (q9, a, q7)}
Their intersection recognizes any sequence of ‘a’ that is of length divisible by 6. Intersecting

with a simple wFSA that recognizes exactly one string will yield either a wFSA with no transitions,
indicating the string is not in the language, or a wFSA that returns that one string indicating it is in
the language. If the wFSA is probabilistic, then the string will be recognized with the probability
it occurs in the language.

Finite-state machines can be used to, e.g. represent HMMs, though to show this, it is better to
introduce a generalization, weighted finite state transducers (wFST):

A weighted finite-state transducer is a 6-tuple M = (Q,Σ,Ω, λ, ρ, δ) whereΩ is a finite alphabet
of output symbols, δ : Q × Σ ∪ {ϵ} × Ω ∪ {ϵ} × Q → R is the revised transition function, and all
other items are as before. ϵ is a special alphabet symbol which indicates no symbol is read/written.

1

wFSTs are closed under composition, so if you have wFSTs M1 and M2, you can build M3 which
behaves as M1(M2), i.e. passing a string through the chain of transducers. This allows for the
bigram HMM to be fairly cleanly written:

Mtrans =
Q = {qx∀x ∈ Σ ∪ {qSTART, qEND}}
Σ = {Penn Treebank POS tags}
Ω = Σ

λ = {qSTART → 1}
ρ = {qEND → 1}
δ = {(qi, j, j, q j, P(j|i))∀i, j ∈ Σ × Σ}∪

{(qSTART, i, i, qi, P(i|START))∀i ∈ Σ}∪
{(qi, ϵ, ϵ, qEND, P(END|i))∀i ∈ Σ}

Memit =
Q = {q}
Σ = {Penn Treebank POS tags}
Ω = {Vocabulary}

λ = ρ = {q→ 1}
δ = {(q, i, j, q, P(j|i))∀i, j ∈ Σ × ∆}

Pushdown Automata and Context-Free Grammars
Some languages cannot be recognized by FSAs. For instance, the language anbn, i.e. n ‘a’ fol-
lowed by n ‘b’, for arbitrary n. More practically, the language consisting of strings with balanced
parentheses (and possibly other symbols) is also not recognizable by FSAs. The proof of this is
quite elegant (it involves something called the ‘pumping lemma’). This is particularly troubling to
us because we would like to bracket sentences into hierarchical syntactic chunks.

For example,
[[We/PRP]NP [would/MD [like/VB [[to/TO [bracket/VB [sentences/NNS]NP [into/IN hierar-

chical/JJ syntactic/JJ chunks/NNS]PP]VP]VP]S]VP]VP ./.]S

This is somewhat more elegantly (but less compactly) written as in Figure 1.

2

S

NP

We/PRP

VP

would/MD VP

like/VB S

VP

to/TO VP

bracket/VB NP

sentences/NNS PP

into/IN NP

hierarchical/JJ syntactic/JJ chunks/NNS

Figure 1: Syntactic Tree
A mechanism that can represent such languages is the weighted pushdown automaton, which

is like an FSA but with a stack. However it’s far more common to see these languages written in
an equivalent formalism, the weighted context-free grammar (wCFG). This is a 4-tuple (N,Σ,R, S)
where N is a set of non-terminal symbols, σ is a set of terminal symbols, S ∈ N is a designated
start symbol, and R : N × (N ∪ Σ)∗ → R are the production rules. Here is a CFG (weights of
productions shown assumed to be 1) for anbn (N = {S },Σ = {a, b}):

S → ab
S → aS b

Here are the productions that can be used to form the tree in Figure 1 (excluding tags for POS to
word; POS listed in lowercase):

S → NP VP .
S → VP

NP→ prp
NP→ nns PP
NP→ j j j j nns
VP→ md VP
VP→ vb S
VP→ to VP
VP→ vb NP
PP→ in NP

3

Penn Treebank
Built in the 90s at Penn for about 1 million dollars. 1 million words in about 40,000 sentences of
WSJ text. First large scale analysis of naturally occurring syntax (other components include much
more POS tagging and speech annotation). Compared to the POS tag set, there are many fewer
tree labels:

However, the annotation guide for the treebank is 318 pages long (compared to 37 for POS
tags).

This was meant to be a documentation of how people really constructed (English, largely news)
sentences rather than being told what was and was not done by linguists. Also now we could think,
if given a new sentence, can we automatically annotate it in the same way?

BTW, the treebank is divided into sections, and it’s common for people to train on sections
2-21, use dev for section 22, and evaluate on section 23. This has enabled comparable results over
about 25 years, but there is concern that we’ve overfit on this data set by now! There are other
treebanks that have been constructed for other languages and for English, but none is as consistent
or large as Penn Treebank.

Evaluation
Parsing scores are typically given as an F1 measure, comparing gold (i.e. reference) to hypothesis
brackets. Let’s assume the left side of Figure 2 is the gold sentence and the right side is the
hypothesis. Then, the brackets for each are:

gold hyp
(S 0 7) (S 0 7)
(NP 0 1) (NP 0 1)
(VP 1 7) (VP 1 7)
(NP 2 4) (NP 2 7)
(PP 4 7) (NP 2 4)
(NP 5 7) (PP 4 7)

(NP 5 7)

4

5

82

22

02

00

VGNGUEQRG

&6

VJG

+0

YKVJ

02

00

DGCT

&6

VJG

8$&

UCY

02

242

+

5

82

02

22

02

00

VGNGUEQRG

&6

VJG

+0

YKVJ

02

00

DGCT

&6

VJG

8$2

UCY

02

242

+

5

82

22

02

00

�VGNGUEQRG�

&6

�VJG�

+0

�YKVJ�

02

00

�DGCT�

&6

�VJG�

8$&

�UCY�

02

242

�+�

�5�

�82�

�22�

�02�

00

�VGNGUEQRG�

&6

�VJG�

+0

�YKVJ�

�02�

00

�DGCT�

&6

�VJG�

8$&

�UCY�

�02�

242

�+�

�5�

�82�

�02�

�22�

�02�

00

�VGNGUEQRG�

&6

�VJG�

+0

�YKVJ�

�02�

00

�DGCT�

&6

�VJG�

8$&

�UCY�

�02�

242

�+�

�

Figure 2: Two parses of a sentence

F1 is the harmonic mean of recall and precision. In such a scenario we can divide up items
in a response into correct (items in hypothesis and reference), missed (items in reference but not
hypothesis), and spurious (items in hypothesis but not reference.) Precision is correct

correct+spurious.

Recall is correct
correct+missed. F1 = 2 · precision·recall

precision+recall .
In the example above, 6 items are correct, one is spurious, and none are missed. Thus the

precision is 6/7 = .857, the recall is 6/6 = 1.0, and the F1 is .923.
Given a grammar and a sentence, how do we efficiently find a parse tree for that sentence? More

importantly, how do we find the most likely parse tree? The core of answers to these questions is
in the CKY algorithm, a bottom-up dynamic programming algorithm. CKY requires rules to be in
a special form called ‘Chomsky Normal Form’ (CNF) that only allows rules of the following form:

X → Y Z
X → a

where X,Y,Z are nonterminals and a is terminal. There must be exactly two nonterminals on the
RHS of a rule or there can be exactly one terminal. Although there are well established techniques
for converting, for now let’s assume we already have a grammar in this form.

Here’s the core algorithm (see also alg. 13 on p. 228 of Eisenstein):

c h a r t = d e f a u l t d i c t (lambda : d e f a u l t d i c t (s e t)) # s t a r t −>end−> l a b e l s
b p t = d e f a u l t d i c t (lambda : d e f a u l t d i c t (s e t)) # s t a r t −>end−>b a c k p o i n t e r s
f o r w in range (1 , l e n (s e n t)+ 1) : # w i d t h

f o r s t a r t in range (l e n (s e n t)−w+1) :
end = s t a r t +w
i f w == 1 :

f o r l h s in t e r m s [words [s t a r t]] :
c h a r t [s t a r t] [end] . add (l h s)

e l s e :
f o r mid in range (s t a r t +1 , end) :

f o r r h s 1 in c h a r t [s t a r t] [mid] :
f o r r h s 2 in c h a r t [mid] [end] :

f o r l h s in n t e r ms [r h s 1] [r h s 2] :
c h a r t [s t a r t] [end] . add (l h s)
b p t [s t a r t] [end] . add ((mid , rhs1 , r h s 2))

5

Let’s work it out with a small example:

When done you should have this:

6

Building Probabilistic Grammars
How do we actually get grammars? We can read them off of the trees in the treebank. As seen
above, these are not always in CNF. Simpler than changing the grammar, we can modify the trees
themselves. We can do the same with unary chains, collapsing them.

How to choose probabilities for grammar rules? To be probabilistic, the sum of all rules with
the same LHS should be 1.0; given that we’re still being generative here, this is P(T |W)P(W) =
P(T,W) and with the chain rule and markov and independence assumptions as before, we ulti-
mately want a set of P(RHS |LHS) probabilities to multiply. We calculate these empirically from
the corpus. We then can modify our CKY algorithm above to calculate weights and choose the
maximum for every LHS in a cell.

Here is the example from above with weights to work through:

And here it is filled out:

7

The analogue to the forward algorithm, the inside algorithm, computes the partition function
(sum of probabilities of all trees) by replacing max with add.

It turns out that just using simply extracted rules gets us parse scores of around 73% which is
not good; modern pre-neural parsers are in the mid-90s. Why are these rules not good enough on
their own? Because the rules extracted from trees are both too specific and not specific enough!

0.1 Too Specific – Markov Binarization
Consider the tree:

(NP

(DT the)

(JJS tallest)

(NN steel)

(NN building)

(NN antenna)

(PP

(IN in)

(NP

(NNP America))))

This yields the rule

NP -> DT JJS NN NN NN PP

which is totally useless for

(NP

(DT the)

(JJS tallest)

(NN building)

(PP

(IN in)

(NP

(NNP America))))

Previously I (hopefully in class, but not in notes) mentioned that changing the trees is an easy
way to get into CNF. For perfect reconstruction you can do this by introducing one-time nontermi-
nals, e.g.

(NP

(DT the)

(T145-1

(JJS tallest)

(T145-2

(NN steel)

8

(T145-3

(NN building)

(T145-4

(NN antenna)

(PP

(IN in)

(NP_NNP America)))))))

Though in this case that would not generalize to even “The tallest iron building antenna in
America” so at least we should introduce terminals for each pattern:

(NP

(DT the)

(DTˆJJSˆNNˆNNˆNN-1

(JJS tallest)

(DTˆJJSˆNNˆNNˆNN-2

(NN steel)

(DTˆJJSˆNNˆNNˆNN-3

(NN building)

(DTˆJJSˆNNˆNNˆNN-4

(NN antenna)

(PP

(IN in)

(NP_NNP America)))))))

But if we introduce reusable nonterminals we can get more flexible rules. For instance, we can
remember the nonterminal we’re in and the pos tag to our left:

(NP

(DT the)

(NPˆDT

(JJS tallest)

(NPˆJJS

(NN steel)

(NPˆNN

(NN building)

(NPˆNN

(NN antenna)

(PP

(IN in)

(NP_NNP America)))))))

This gives us rules like

NPˆJJS -> NPˆNN

which are useful in the smaller sentences.

9

0.2 Not Specific Enough
0.2.1 Not Specific Enough I: Modeling Parent-Child Behavior

Let’s say we saw:

(NP

(NP the man)

(PP in the car))

90 times (eliding the unimportant details of the trees)
and

(NP

(NP the man)

(PP in the car)

(PP with the dog))

10 times. Using MLE, we get

NP -> NP PP 90/200 = .45

NP -> NP PP PP 10/20 = .05

(NP -> DT NN 100/20 = .5)

What happens if we then want to parse ‘the man in the car with the dog’? The sentence seen in
training scores .05 for the combining rule, while this parse:

(NP

(NP

(NP the man)

(PP in the car))

(PP with the dog))

scores .45 × .45 = .2020 for the combining rules! This shouldn’t be! A chain (NP NP NP) not
seen in training scores higher than the chain seen in training.

What can we do? Annotate with more context – give nonterminals their parent symbols as
well:

(NPˆVP

(NPˆNP the man)

(PPˆNP in the car))

and

(NPˆVP

(NPˆNP the man)

(PPˆNP in the car)

(PPˆNP with the dog))

Now the rule

NPˆVP -> NPˆNP PPˆNP

can’t be used twice!

10

0.2.2 Not Specific Enough II: Modeling Lexical Behavior

It turns out words do matter! Consider:

(S

(NNS workers)

(VP

(VP

(VBD dumped)

(NP

(NNS sacks)))

(PP

(IN into)

(NP

(DT a)

(NN bin)))))

seems correct. The dumping is into a bin. Consider an alternative:

(S

(NNS workers)

(VP

(VP

(VBD dumped)

(NP

(NP

(NNS sacks))

(PP

(IN into)

(NP

(DT a)

(NN bin)))))

They dumped a thing called “sacks into a bag.” Seems wrong.
Which is more likely? It comes down to the difference between these two rules:

VP -> VP PP

NP -> NP PP

Both are good. Neither directly compared. This seems arbitrary. But PPs with ‘into’ have a
strong preference to be attached to VPs, not NPs. Consider if it was instead ‘sacks of oranges.’
What to do? Annotate labels with their lexical ‘heads.’ What’s a head? the most important word
in a phrase. How are these determined? Rules, actually. That were written down in 1995.1 Re-
member, it’s only 21 types so it’s not that bad. Here’s an example for VP: [VBD VBN MD VBZ
TO VB VP VBG VBP ADJP NP]. Use the leftmost of the first of these categories, if it appears. If
it doesn’t use the left most of the next one and so on. Following the rules you get:

1http://www.cs.columbia.edu/˜mcollins/papers/heads

11

(S/dumped

(NNS/workers workers)

(VP/dumped

(VP/dumped

(VBD dumped)

(NP/sacks

(NNS/sacks sacks)))

(PP/into

(IN/into into)

(NP/bin

(DT/a a)

(NN/bin bin)))))

Now we are comparing these rules

VP/dumped -> VP/dumped PP/into

NP/sacks -> NP/sacks PP/into

The first seems much more likely.
(In an older version of this course we’d now have to talk about how there aren’t likely to be

sufficient statistics to estimate these fairly fine-grained rules, so we’ll have to add smoothing. The
smoothing for parse trees can be quite complicated and would take one lecture at least, but using
neural approaches ends up allowing us to skip over all of that.)

Lexicalization proved very important! So important that there isn’t a lot of constituent parsing
research any more since a new formalism for syntax became dominant...dependency trees!

Quick Note about PP Attachment and Syntax in General
Most of the time this ambiguity doesn’t exist and there is one dominant parse of a sentence. ‘I saw
the man with the telescope’ has two regular readings and neither is strongly preferred. In general
if there is ambiguity then the sentence should be reworded. In other cases there is a semantic-
syntactic bleed. For example ‘I saw the man with my eyes’ is all but unambiguous. ‘I saw the man
with my watch’ is mostly unambiguous, and ‘Officer, I saw the man with my watch’ even more so;
this is entirely due to semantics.

One could ask why syntax matters independent of semantics. Good question for a linguist but
I think it resolves redundancy in a noisy/homophone environment (’I block the block’ or Buffalo
sentence) and it provides in-group and level of familiarity signal (‘I bus stop seek’ may get more
offers of help due to unfamiliarity than properly ordered equivalent).

12

