Efficient Inference

Jonathan May
October 8, 2025

1 Why Inference is Inefficient

Repeated Steps As originally described, in order to calculate the next token you consider
all the previous (or all if an encoder) tokens for suitability to attend to, by forming K repre-
sentations of those tokens and () representation of your current token. You then incorporate
a V representation. But that means K; and V; (the K and V for token 1) is calculated for
attending to position 2, position 3, etc. This is extra work!

GPUs are designed for throughput, not latency If you want to generate for a lot of
input contexts at once using Transformers on GPUs you are in luck—the parallel operations
make that rather efficient. Stack up all the contexts for your batch and the GPU will
calculate the next token for all contexts all at once. If your batch size is 100 you get 100
outputs in (nearly) the time it takes to get one output. So the time per token is fast. But
that still means you're waiting and see no output until you suddenly get all the outputs at
once. This isn’t helpful if you want low latency, i.e. you don’t wait until you see output, you
are stuck.

Quadratic Attention Remember that (assuming single head for a moment, though the
math is the same) for every position, assuming n context length, attention is calculated for
n previous positions. This is O(n?) calculations and as much memory stored as well, so as
a sequence length grows the computational and memory needs explode.

2 Caching

K and V for the prefix tokens are repeatedly used as the text is being generated. It’s slow to
continuously do the matrix multiplication operation. Why not just save the pre-calculated
K and V7 The tradeoff is more memory usage; memory grows with the cache length.

Step 4
Q K" QK™ \ Attention
Query Token 1 =l =|=|= ok | ok | ax | ok, Value Token 1 Token 1
03' ° Query Token 2 ?, g. ?‘ ‘g K| QK | 0K | Ok, Value Token 2 Token 2
X = X =
§§ ,;5 Query Token 3 § § § § R I B I Value Token 3 Token 3
v = || S QK | QK | oK [QK
Query Token 4 A - o Value Token 4 Token 4
(4, emb_size) (emb_size, 4) (4, 4) (4, emb_size) (4, emb_size)
Q K" QK™ \% Attention
Value Token 1
£33 |8
NS Sl ol Value Token 2
§E x [2|&fe|s| = X =
& CHINORNTE © Value Token 3
N I Rl e ax | ok | ok | ax,
Query Token 4 Value Token 4 Token 4
(1, emb_size) (emb_size, 4) (1,4 (4, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache

However, OS-level considerations come into play, such as memory fragmentation, the
need to distribute the cache across multiple servers, and paging policies and speculative
loading. In practice a fixed cache is used, so then the question is when to evice memory from
the cache. The considerations are the same as you would experience in a classic OS memory
paging paradigm.

More interesting and specific to our architecture are lossy approaches designed to limit
what is cached. One simple thing to do® is to recognize when a token is not being attended
to frequently and then remove it from the cache and even refuse to attend to it any more.
Other static policies similar to or combined with reduced attention may also be employed.

Figure 2: TOVA policy keeps a fixed-size multi-state
(cells). At each decoding step (different rows),
the state with the lowest attention score is omitted (
cells, which become in subsequent steps).

'https://arxiv.org/abs/2401.06104

A fairly comprehensive (looking?) survey in 20242 has a fairly exhaustive ontology of
caching techniques, for the curious.

» Static KV Cache Selection (Sec 4.1.1))
_[KV Cache » Dynamic Selection with Permanent Eviction (Sec 4.1.2))
Selection (Sec 4.1) Dynamic Selection without Per-
manent Eviction (Sec 4.1.3)
Layer-wise Budget Allocation (Sec 4.2.1)
KV Cache Budget 1 y g]
" Allocation (Sec. 4.2) Head-wise Budget Allocation (Sec 4.2.2))
o Intra-layer Merging (Sec 4.3.1))
L] '[K'V Cache H Cross-layer Merging (Sec 4.3.2)
»| Optimization Merging (Sec. 4.3) y! ging 3.)
M) (Sec. 4) » Fixed-precision Quantization (Sec 4.4.1))
" KV Cache » Mixed-precision Quantization (Sec 4.4.2)]
g Quaniization (Gec. 44 Outlier Redistribution (Sec 44.3))
% » Singular Value Decomposition (Sec 4.5.1))
50
g’o) KV Cache Low-rank » Tensor Decomposition (Sec 4.5.2)]
E Decomposition)] Learned Low-rank Approximation (Sec 45.3) |
& Intra-Layer Grouping (Sec. 5.1.1
§ Attention Grouping 1 z P =))
= L | and Sharing (Sec. 5.1) Cross-Layer Sharing (Sec. 5.1.2))
e Enhanced Attention (Sec. 5.2.1
g Model-level | | Architecture .I{ -))
E |4 Optimization Alteration (Sec. 5.2) Augmented Architecture (Sec. 5.2.2))
°Eo) »[Adaptive Sequence Processing Architecture (Sec. 5.3.1) |
] Non-transformer | - -
= Architecture (Sec. 5.3) Hybrid Architecture (Sec. 5.3.2))
g o Architectural Design (Sec. 6.1.1))
(@] Memory Management
e 4 (Sec. 6.1)]’»{ Prefix-aware Design (Sec. 6.1.2))
o Prefix-aware Scheduling (Sec. 6.2.1))
) ; Preemptive and Fairness-
System-level [SCh(gfulg. mz)g]‘ oriented Scheduling (Sec. 6.2.2)
' Optimiz:;ion »(Layer-specific and Hierarchical Scheduling (Sec. 6.2.3) |
of Single/Multi-GPU Design (Sec. 6.3.1))
- 1/0O-based Design (Sec. 6.3.2
Hardware-aware Design (52))
" (Sec. 6.3) A Heterogeneous Design (Sec. 6.3.3))
o SSD-based Design (Sec. 6.3.4))

3 Attention Patterns

A big problem with transformer decoding is that attention to every previous token is con-
ducted, which means decoding is quadratic. However, there is evidence that in practice most
useful attention occurs within a fixed window of the current token, along with some attention
to the beginning of a sequence. If a cap is placed on the number of positions attendable to,
and there is not much net effect on performance, then we can obtain linear decoding instead
of quadratic (because the number of attended tokens becomes a constant.

3.1 LM-Infinite

Apart from the difficulty of quadratic runtime, in this paper, authors observed that typical
transformer models actually start to suffer when given inputs longer than their training

Zhttps:/ /arxiv.org/abs/2412.19442

inputs. Llama-2 is trained on segments up to 4k in length; beyond this the attention logits
grow toward infinity, and entropy starts to grow. The authors also note that embeddings of
the first couple dozen tokens in a sequence are somehow different from other tokens.

N

Starting few tokens

A
Attention Logit Bound Attention Entropy

Sequence Length 0 Sequence Length | T T T TTT77 [:\

0 2k 4k 6k 8k 0 2k 4k 6k 8k
(a) Attention Logit Explosion at Long Distances (b) Attention Entropy Explosion at Long Lengths (c) Starting Tokens Occupy Distinct Areas

The solution is a statically defined attention mask. That is, just don’t bother attending
to some tokens. But which tokens? To begin with, just do sliding window attention. This
means only the last L tokens are attended to. The idea is that since only L are ever seen in
training, it’s a bad idea to go beyond L (this was a practical limitation in the fixed position
embedding days). But since there is something special about the start tokens, the authors
decided to al§o gttend toa ﬁxedb number of these. The result is a lambda-shaped pattern.

o B0
essential for LLMs

I
|
|
N N I
A-shaped |
mask - i B I
| encode more encode more
i distance ° B2 2 1 0 | absolute less position-sensitive relative
| position position
i attended
. 2 2 1 0 |
masked | -
s 2 % 1 0 | ST middle tokens rear tokens
| tokens
distance , (58 >0 N o [
ce|||ng\' [a @&
2 2 1 0 1o 1 2 3 4 i-2 -1 i
|
|

(a) Proposed Solution: LM-Infinite (b) A Conceptual Model of Relative Positional Attention

The final change (probably they did this at the beginning but the narrative is nice) is to
alter the declared position for the initial tokens. Remember, those are still going to be more
than L positions away and this is poorly modeled. So create a ‘ceiling’ and just treat them
as being L away. These all turn out to make a pretty big difference.

—— wanila
12 window e
— A
— ceiling
101 — LM-Infinite
p
8 #

o 1000 2000 3000 4000 5000 6000 7000 8000

If you just use vanilla transformers, there’s a spike at the training length limit (2k) and
things get really bad after 6k. Reducing to a sliding window doesn’t prevent the 2k spile

but seems to calm down the later spike. Interestingly, just resetting the first tokens to the
ceiling and not sliding removes the 2k spike but naturally still leads to bad outcomes after
6k. Everything together is best, of course.

Overall results look pretty good. It’s a little weird to just miss parts of the input but
apparently these aren’t used that much. Evaluated on QASPER, which is a QA dataset.
“Each question is written by an NLP practitioner who read only the title and abstract
of the corresponding paper, and the question seeks information present in the full text.
The questions are then answered by a separate set of NLP practitioners who also provide
supporting evidence to answers.” Also evaluated on passkey retrieval, which is like needle
in a haystack.

Passkey Retrieval Qasper
Model 6K 8K 10K 12K 16K average
Original 00 00 00 00 00 0.0 1.2

Truncated 66.0 553 388 328 273 440 30.1
LM-Infinite 70.3 90.8 865 793 79.1 812 313

Results on NLL at long length don’t look as good as MEGA (not directly compared) but
MEGA is a whole separate architecture, while this can be added on top of any already-trained
transformer.

Negative Log-Likelihood
LLaMA

I\ A\ MPT-7B
\ AN
[RAAA AT

/ o/

GP ||¥'« \/\\/\\

MPT-7B

MPT-7B-

Llama-2

ettt AR A

0 20000 40000 60000 80000 100000 120000 Length

4 Speculative Decoding

Let’s assume we have a slow, good, large model S and a fast, bad, small model F'. We want
to decode with S but doing so is too slow because it requires a pass through the model
for each token. KV caching speeds it up some but it’s still too slow. We can’t really take
advantage of GPUs either because there’s no parallelism (unless we have lots of people asking
for inference at the same time). Imagine if we had a good idea of what we were going to
generate ahead of time for the next n tokens. We're not sure the n tokens are correct but
it’s easier to verify them than to generate them because thanks to GPUs we can verify them
all at once. That’s the idea of speculative decoding:?

Shttps://arxiv.org/pdf/2203.16487

| _ | 1 | S A B AT |
_t t t i Verify in Parallel S

Autoregressive (A N T T
Decoding 3 ; g
E Lok ‘ol Efficiently Draftf,
> “» ‘ \ f

=[] X 0#0

1. Using F', decode the next n tokens. This uses some compute but since F' is so small,
it doesn’t use much.

2. Using S, check those n tokens, i.e. determine if they are indeed the most likely outputs.
Note this is basically the same amount of compute as decoding the next 1 token.

3. At the first point ¢ that S and F' disagree, swap in the prediction from S and throw
out the rest of the sequence from F.

4. Starting at ¢ + 1 or n + 1 if the sequence was perfect, go back to step 1.

Worst case scenario we have the overhead from repeated calls to F' on top of the cost
to decode with S one token at a time (note that you are guaranteed one new S-generated
token per call). Best case scenario you save n — 1 calls to S. If you're willing to accept
mismatches as long as S thinks they’re fairly close to the top-1 then you can save even
more time, though this is slightly lossy. The table below compares also to an earlier version,
‘blockwise decoding’, where S is used with extra heads to try to generate the next k tokens
at a single position.

Models EN—DE DE—EN EN—RO RO—EN
Speed BLEU Speed BLEU Speed BLEU Speed BLEU

Transformer-base (b = 5) 1.0x 28.89 1.0x 32.53 1.0x 34.96 1.0x 34.86

Transformer-base (b = 1) 1.1x 28.73 1.1x 32.18 1.1x 34.83 1.1x 34.65

Blockwise Decoding (k = 10) 1.9x 28.73 2.0x 32.18 1.4x 34.83 1.4x 34.65
Blockwise Decoding (k = 25) 1.6x 28.73 1.7x 32.18 1.2x 34.83 1.2x 34.65

SpecDec (k = 10) 4.2x 2890 4.6x 32.61 3.9x 3529 4.1x 34.88
SpecDec (k = 25) 5.1x 2893 5.5x 3255 4.6x 3545 4.8x 35.03

12+2 Transformer-base (b = 5) 1.0x 29.13 1.0x 32.45 1.0x 34.93 1.0x 34.80
1242 Transformer-base (b = 1) 1.1x 28.99 1.1x 32.08 1.1x 34.79 1.1x 34.55

Blockwise Decoding (k = 10) 1.6x 28.99 1.7x 32.08 1.2x 34.79 1.2x 34.55
Blockwise Decoding (k = 25) 1.4x 28.99 1.5x% 32.08 1.1x 34.79 1.1x 34.55

SpecDec (k = 10) 2.7x 29.08 3.0x 32.40 2.3x 35.12 2.4x 34.85
SpecDec (k = 25) 3.0x 29.13 3.3x 3248 2.5x 35.07 2.6x 3491

In practice to get this to be efficient takes some careful engineering because you want
to align your F' and S model together so you're operating in lock step. Also, there are
finicky considerations like that F' and S need to have the same vocabulary. In the actual
SpecDec paper the draft model is not just a small model; it is mildly non-autoregressive in
that it predicts a sequence of subsequent tokens simultaneously given a context. There are,
as always, lots of variations to explore.

