
Language Models (Feed Forward and RNN)

Jonathan May

September 17, 2024

1 Feed-forward language models

We previously introduced Multilayer perceptrons (MLPs) for classification. How can we use
these for language modeling? Further, why might these be useful for language modeling?

First the how. Although this can be multi-layered, let’s use a simple one-layer architec-
ture, assume a context of four words, and a non-linear function for the hidden layer called
g. We assume the dimension of a word representation (aka the ‘embedding’) is 50 and the
dimension of the hidden representation is 100. We also assume a vocabulary of 20,000 words.
When calculating the hidden and output vectors (but not the embedding) we will assume
a bias term. We thus have the following weight (i.e. parameter) matrices, which are listed
along with their dimensions:

• Embedding table E : (20,000 x 50)

• Hidden weights H : (200 x 100)

• Hidden bias bH : (1 x 100)

• Output weights U : (100 x 20,000)

• Output bias bU : (1 x 20,000)

E is indexed by the vocabulary. We want to get the probability of the example above,
in a 5-gram model. So that is P (Call|START,START,START,START)P (me|Call,START,
START,START)P (Ishmael|me,Call,START,START), etc.

For the first term, P (Call|START,START,START,START), assume we have some row
in E for START. Concatenate four copies of that row; we’ll call that x. Put that into the
network and then when we get to softmax and the output probabilities, we retrieve the cell
for Call. Then we continue similarly for P (me|Call,START,START,START) and so on.

What is the advantage of using this approach instead of the non-neural n-gram approach
(apart from the empirical superior performance)?

Smoothing/Interpolation: Notice that for any 4-gram over the vocabulary space, we
can get the probability of each word. There is no explicit backoff or smoothing here.

Storage: Let’s compare the sizes of the feedforward and non-feedforward models. First
sum up the feedforward:

1

• E: 1,000,000

• H + bH : 20,100

• U + bU : 2,020,000

• Total: 3,040,100

Notice that this is not dependent on how much training data we use. It is dependent
on some modeling decisions, like embedding and hidden size, number of layers, etc. Most
of all it’s dependent on vocabulary. Contrast this with the number of parameters used for
a 5-gram model. This is highly dependent on corpus size. Below we show the parameter
size if the model is trained on moby dick and tom sawyer and compare this to training on
the treebank portion of the wall street journal. Note that both are considered fairly small
corpora for language modeling. I also added stats for gigaword, a much larger corpus.

n-gram moby dick + tom sawyer wsj treebank gigaword
(tokens) 181,017 1,107,391 4.2b
5 180,612 1,074,244 558m
4 178,904 1,037,648 447m
3 167,372 906,848 246m
2 113,439 530,884 60m
1 27,279 85,967 1m
total 667,606 3,635,591 1.3B

The feedforward model, meanwhile, remains a constant size.

1.1 Why should this work?

To some degree this is a bit of a mystery on a deep level. But there is some good intuition
for why this might work. There are multiple angles to address this question; here’s one:

A word embedding can be thought of as features specific to that word type. Rather than
treat each of 20k words as 20k independent items, we characterize them as having certain
properties. We could do this by hand (e.g. ‘French origin’, ‘animate’, ‘plural’) but rely on
training for these features to be implicitly defined. By representing a 20,000-dimensional
object in 50-space, some properties shared among disparate objects have to be identified,
otherwise learning won’t happen.

Similarly, the hidden representation is a 100-dimensional representation that generalizes a
four-gram – there are 20, 0004 possible such objects. This is formed by considering multiple
embedding features together simultaneously. If we added more hidden layers this would
consider multiples of multiples of features simultaneously.

2 Limitations of Feed-Forward Networks

Feed-forward language models solve a lot of the problems with (non-neural) n-gram models.
Specifically they

2

• generalize, handling the sparsity problem much better than n-gram models, with much
lower perplexity on unseen n-grams.

• are efficient, requiring constant memory and do not blow up with the amount of training
data (and hence noverl n-grams) seen.

• allow for larger n; beyond 5-grams, non-neural models were never that helpful. We
used 12-gram feed forward models effectively.

There are some limitations, however. Some are newly introduced, while some are persis-
tent and may now be addressed.

• Although the size of feed-forward is fixed, it is highly dependent on vocabulary size (this
also determines computation time). This limits the vocabulary rather significantly.
There have been methods to overcome this, either partially or totally, some of which
we will talk about (subword models) and some of which we won’t (noise-contrastive
estimation, hierarchical softmax).

• Compared to non-neural models, neural models take a rather long time to train, since
parameter estimation using maximum likelihood and smoothing requires only one pass
through the data, (with very simple calculations). The use of GPUs helps this some-
what but it remains an ongoing concern we won’t directly discuss.

• Correctly modeling language can require very long context. E.g. My mother, who

once fought in the Italian Army, which is actually nicer than you might expect,

lived with three bermuda sharks and (like/likes) ice cream.. We are fun-
damentally limited by whatever n we select. We will directly address this now.

3 Recurrent Neural Networks (RNNs)

In some respects, RNNs are very similar to feed-forward networks. A word representation
feeds into one or more hidden layers, fully connected and with a nonlinear function, and
ultimately the hidden representation is used to predict the probability of the next word.
Gradient descent along the cross-entropy loss via backpropagation is used to update param-
eters.

The key difference is in the structure of the parameters, specifically in the construction
of the hidden vector, h. Here is the way h is constructed in feed-forward, as a 4-gram model
with an embedding dimension of 3 and a hidden dimension of 6:

3

By comparison here is the construction of a hidden unit h1 for an RNN:

Notice that the input to the RNN is a hidden vector and a word embedding. The output
is another hidden vector.1 However, this only captures the hidden representation for one
word. If we want to capture the sequence w1, w2, w3 we simply re-do the calculation, using
the last calculated h. Note that at each step we use the same H and bH and these are not
shown in the diagram below for space reasons.

1There’s no special requirement about the size of the hidden or embedding vectors; I just made them
look very similar to illustrate how similar the computation is.

4

h1,2,3 is a representation of w1, w2, w3 the same as the h in the feed-forward example.
Just as in the feed-forward case, we can get a logit layer from h1,2,3 (which we will now call
simply h3) and then with softmax get probabilities over the next word. But of course we can
continue adding words and getting new hidden vectors that capture more and more context.

The hidden vectors can be viewed as (and I often describe them as) states in the sense of
a finite-state automaton. Each position in hidden space is a state, from which an arc labeled
with each word in the vocabulary leads to another state. Different from an FSA, however,
is that an RNN is an infinite-state automaton (at least to the level of representability in
hardware).

Note that H can be divided into the piece that applies to the hidden state input and
the piece that applies to the lexical input; the pieces are frequently written as Hih and
Hhh to distinguish between the weights relevant to the context (hidden-to-hidden) and those
relevant to the words (input-to-hidden):

5

Recall that feed-forward parameters were dependent on the amount of context that was
used; for each additional word of context there were V×hidden more parameters; as V can
be large this is quite substantial.

As with feed-forward networks, RNNs can be stacked ; this is where the ‘deep’ in deep
learning comes from. The hidden unit at a layer becomes the ‘input’ to the next layer.
Typically, the last layer is then converted (via output weights) to logits to predict the next
word in the sequence. Typically, each layer has a separate learned h0, H, and bH , which are
learned, as is the output weight matrix O and bias bO. So if the non-linear function is σ, the
embedding of word wj is xj, the hidden weights at layer i are Hi, bH,i and the initial hidden
state h0,i, the logits for predicting w2 would be calculated as σ([σ([x1;h0,1]H1+bH,1);h0,2]H2+
bH,2)O + bO.

6

3.1 Training

The structure of the training for RNN LMs is quite simple; you constantly evaluate the
prediction of the next word given the last context. In theory, this is done over the entire
corpus, but in practice, this can be very slow, since gradients are calculated with respect to
each step in the context, so context is limited to the sentence. Standard cross-entropy loss
is generally used.

7

4 Unreasonable effectiveness of

It turns out RNNs are pretty powerful generation models; this was not always true of the
strictly n-gram models. Andrej Karpathy, in a blog post titled ‘The Unreasonable Effec-
tiveness of RNNs’2 built an RNN that operated one character at a time and trained it on
various kinds of text, then generated samples from the trained models and got surprisingly
good outputs.3

4.1 Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be

attain’d into being never fed, And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should

be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun out

of the fact, to be conveyed, Whose noble souls I’ll have the heart of the wars.

Clown: Come, sir, I will make did behold your worship.

VIOLA: I’ll drink it.

4.2 Wikipedia

== ’’Declaration of Protectance from Iceland’’ ==

In the late 1970s, [[Deep Seols]] and the Australian Federal Navy in order to

establish a police duty of a several federal government of the world.

Since 2004 the state regarded as a [[Suffolk Act 1994]], but the [[Army

personality|Armed Forces]] appeared in Paris, despots with Nelson concentrated

on) was inaugurated as his father. Heraldry put an attempt to get influent

territory register. Hayling among their lost operations, a population of

Deliberate countries arrived and Harry Elser, established [[The West Virasian

2http://karpathy.github.io/2015/05/21/rnn-effectiveness/
3Even in around 2017 when I first made these notes and up until maybe even 2019 these were still pretty

surprising but as of this update, written in 2023, it’s probably not that surprising. I leave them in to point
out that the fairly modest char-lstm Karpathy built in 2015 did a really good job.

8

Socialist Wars]] for 16 year and modern democratic 30 [[Justice|booms]]

elections to the CDC.

4.3 LATEX(some compile bugs had to be fixed)

Yoav Goldberg showed that even a simple unsmoothed character-based ngram model
did pretty well on shakespeare, but less so on code, where matched braces are needed:
https://nbviewer.org/gist/yoavg/d76121dfde2618422139

5 Variants

As we have seen, RNNs can in theory represent infinite context. In practice it is hard to
do this due to some practical considerations. Calculating gradient through time requires
repeated multiplications of the hidden weight matrix. It turns out that if the largest eigen-
value of H < 1 then the gradient will shrink exponentially (vanish), which means after not
many words of context you won’t see any effect. Also, if the largest eigenvalue of H > 1
then the gradient will grow exponentially (explode) which can cause updates to be too large
or even NaN.

Exploding gradients can be clipped: define a maximum gradient amount (i think ‘5’ is
often used) and if the L2 norm exceeds that amount, divide the gradients by max/||g||. For
vanishing gradients scaling can be used, but another solution was found: Long Short-Term
Memory (LSTM), a more complicated RNN that has a memory element and a means of
learning how much memory to keep from step to step.

5.1 Long Short-Term Memory (LSTM)

The key to LSTM is as follows:

9

• The ‘pre-cell’ is a standard nonlinear calculation (typically tanh or Relu).

• Input, forget, and output ‘gates’ are vectors of values from 0 to 1 (typically sigmoid)

• The cell is formed by gating how much should be input from the pre-cell and how much
should be forgotten from the last cell (then adding these).

• The hidden state is formed by tanh-ing the cell and then using the output gate to
determine how much gets through.

The equation slide from Abi See (stanford class) and figure from Chris Olah (also used
by Abi See) help me understand.

10

Let’s walk through it. The gates themselves are all identical. Imagine if this was a generic
RNN. Then the hidden state would be g(U(xt;ht−1)) where g is the nonlinear function, xt

is the data input and ht−1 is the last state. Each gate uses a sigmoid function to go from 0
to 1 and has its own U ; one for forget (f), one for input (i), and one for output (o).

Let’s also assume not only is there an incoming hidden state ht−1, there’s a different kind
of incoming hidden state called the cell, ct−1. First, we do f × ct−1, which means some of
the cell state gets forgotten.

Then we want to add in some new content to the cell. We have a U for that, too, specified
for the cell state. In LSTM, the nonlinear function is tanh. So we form the preliminary new
cell state c̃t = tanh(Uc(xt;ht−1)). But we only want to keep some of that in the cell state so
we multiply it by the input gate. Then the new cell state is f × ct−1 + i× c̃t, keeping some
of the old cell and some of the new data.

What about ht? We first squash ct through tanh and then use the output gate to
determine how much of that to keep. ht = o× tanh(ct).

5.2 Gated Recurrent Units

Very similar idea to LSTMs; proposed by Cho et al. in 2014. Simpler than LSTM but same
idea:

• No cell state. Two gates; update and reset.

• pre-hidden state calculated like a classic hidden state but hadamard of reset with the
previous hidden state (like a forget gate)

• final hidden state interpolates between last hidden and current pre-hidden using update
and 1-update (which thus functions like an input and output/forget)

11

Again, the slides:

There are other variants but LSTM and GRU are the most widely used RNNs. It’s
unclear which is better. Other ways to prevent forgetting the past are the use of attention
and residual connections, which are both ways of ‘skipping’ the chain of words in one way
or another.

12

5.3 Residuals

Simplifying the equation above, let’s let h1 = σ([x1;h0,1]H1+bH,1) and h2 = σ(h1;h0,2]H2+
bH,2). However, when going up a layer, add the last layer in on top of the computed layer.
So h2 = h1+h2. Visually it skips the processing of the layer to ensure nothing gets ‘diluted.’

13

5.4 Attention

Consider the figure above. We want to predict the word after ‘special.’ The most infor-
mative word for predicting that is not ‘special’, it’s ‘Meowser.’ State h4 contains information
about all the previously seen words but the ones seen a while ago are less ‘fresh’ (empir-
ically). Instead of predicting the next word from just h4, let’s predict it from a weighted
combination of all previous states. But how much should we attend to each state? Well, of
course, we’ll naturally learn that!

Let the output embeddings matrix be O(u× |V |). Without attention, the word choice is
argmaxOh4. Let’s introduce a matrix A(u × u) for converting each of our previous hidden
states h1 . . . h4 into vectors with the special task of determining relatedness.4 Ah1 = a1 and
so on for a2 . . . a4. Then a1 · h4 is a scalar, and its magnitude will be higher if a1 and h4 are
more similar. We can use softmax across [a1 · h4, a2 · h4, a3 · h4, a4 · h4] to get a distribution,
which we can call α1, . . . , α4.

5 Then let:

h4,attn =
4∑

i=1

αihi

And now the word choice is argmaxOh4,attn. Presumably, α1 will be large (if we’ve
learned properly) and so ‘Meowser’ will better inform the completion of the sentence.

As we will see, since 2017, Transformer networks have gone a long way to replacing RNNs
but use a lot of the techniques that RNNs incorporated to solve these problems.

4There are a lot of ways to do this. This is one such way.
5You may ask ‘why convert into ai at all?’ This is left as an exercise for the reader.

14

