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1 Nominal task: text classifier

We have some book reviews. We want to know automatically if they’re positive or negative.
Positive review:

I loved this book. The food was really good and fast (which is good

because I have a very packed schedule). Also great if you’re on a

budget. The recipes have variations so I could eat different things but

not have to buy a whole new set of ingrediants.

Negative review:

I tried reading this book but found it so turgid and poorly written that

I put it down in frustration. It reads like a translation from another

language by an academic bureacrat. The theme is interesting, the

execution poor. Cannot recommend

2 Evaluation

We should always ask: ‘How do we know we are doing well at what we are trying to do?’
This time the answer is fairly simple (it won’t always be). We collect many reviews along
with their labels (Positive/Negative, which we may have to create out of some other labels,
like a numerical score).

We’ll calculate simple accuracy :
# correct
# total

.

3 Data

We will divide our data into train, development (dev) (also sometimes called ‘validation’)
and test corpora. Train is used to build a model and is the largest data set (usually 80% of
the data). Dev is not used to train but is frequently consulted during optimization (where
relevant) to avoid overfitting on training data. Test is usually not evaluated or looked at
except for when optimization is done, to ensure even less overfitting. Sometimes an even
more super-secret blind test set is not even available to you but held off to test your final
model.
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4 A classifier model

Here’s a simple framework for this problem:

def eva luate ( sentence , option , model ) :
# f i l l me in
pass

def c l a s s i f y ( sentence , opt ions , model ) :
s c o r e s = {}
for opt ion in opt ions :

s c o r e s [ opt ion ] = eva luate ( sentence , option , model )
# key func t i on s as argmax
return max( s co re s , key=s c o r e s . get )

Let’s consider methods for the ‘evaluate’ function:

5 Rule-Based (top-down?) Model

Positive reviews should have positive words, and negative reviews should have negative
words. Thankfully, people have compiled such sentiment lexicons for English. See http:

//www.enchantedlearning.com/wordlist.
Positive words example: {absolutely, adorable, bountiful, bounty, cheery}
Negative words example: {angry, abysmal, bemoan, callous}
Let’s put the intuition and data together:

# probab l y shouldn ’ t s t r u c t u r e your code t h i s way . . .
model = {}
model [ ’ good ’ ] = set ( [ ’ yay ’ , ’ l ove ’ , . . . ] )
model [ ’ bad ’ ] = set ( [ ’ t e r r i b l e ’ , ’ boo ’ , . . . ] )

def eva luate ( sentence , option , model ) :
s c o r e = 0
for word in sentence . s p l i t ( ) :

i f word in model [ opt ion ] :
s c o r e+=1

return s co r e

6 Empirical Model

Our intuitions about word sentiment aren’t perfect and neither are those of the people who
made the word list. But we do have many examples of reviews and their sentiments. So we
can make our own list of good and bad words. Instead of hard-coding the model as I did
above, we can create a training function that takes in sentences with their labels and then
returns a model:
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from c o l l e c t i o n s import Counter , d e f a u l t d i c t
def t r a i n ( l a b e l e d s e n t e n c e s ) :

s c o r e s = d e f a u l t d i c t (lambda : Counter ( ) ) # doub ly nes ted s t r u c t u r e
for sentence , l a b e l in l a b e l e d s e n t e n c e s :

for word in sentence . s p l i t ( ) :
s c o r e s [ word ] [ l a b e l ]+=1

model = d e f a u l t d i c t (lambda : set ( ) )
for word , t ab l e in s c o r e s . i tems ( ) :
# the most f r e quen t l a b e l a s s o c i a t e d wi th the word
# key f unc t i on s as argmax
l a b e l = max( tab le , key=tab l e . get )
model [ l a b e l ] . add (word )

return model

We now have our first supervised model. We should back up and consider what we are
actually trying to model from a probabilistic view. For one thing let’s consider the actual
probability of each label, rather than our ad-hoc adding method above.

Our classifier should choose argmaxy P (y|s) for sentence s where y is one of a fixed set
of labels. But we didn’t consider s as some monotone thing; we considered the occurrence
of each word as an event.

So we’ll make an assumption called the bag of words assumption which is that for sentence
s = w1w2 . . . wn, we say P (y|s) = P (y|w1, w2, . . . , wn). Note this now doesn’t depend on the
order of the words.1

But this model will only be valid if we can calculate probabilities of a label for the exact
multiset of each sentence’s words. We need another assumption, the Naive Bayes assumption
which is that the probability of a label given a word is conditionally independent of the other
words.

Note from Bayes’ rule:

P (y|w1, w2, . . . , wn) =
P (w1, w2, . . . , wn|y)P (y)

P (w1, w2, . . . , wn)

1This assumption isn’t really part of Naive Bayes, it’s an assumption about the feature set being used.
It’s probably better to say that for x, y, we calculate f(x, y) = f1, . . . , fn and then proceed from there. The
above is a bit of a simplification. The reading avoids this simplification.
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and since the word sequence itself is constant, we can say

argmaxy P (y|w1, w2, . . . , wn) = argmaxy P (w1, w2, . . . , wn|y)P (y)

(This means that we’re optimizing the joint probability P (s, y), but it’s monotonic with
P (s|y).)

We can use the chain rule to break up the first term on the right:

P (w1, w2, . . . , wn|y) = P (w1|y, w2, . . . , wn)P (w2|y, w3, . . . , wn) . . . P (wn|y)

Then we apply the Naive Bayes assumption:

P (w1|y, w2, . . . , wn) ≈ P (w1|y)

and so on for all the other terms. That gives us

P (w1, w2, . . . , wn|y)P (y) ≈ P (w1|y)P (w2|y), . . . , P (wn|y)P (y)

Is this a good model? George Box, statistician: “All models are wrong, but some models
are useful.”

What are the problems with the bag of words assumption?
What are the problems with the Naive Bayes assumption?
Does it work? Yes, for many tasks actually. And it’s very simple, so it’s usually worth

trying.
Here’s a new trainer:

from c o l l e c t i o n s import Counter , d e f a u l t d i c t
wprobdenom = ” ALL ” # assume t h i s token doesn ’ t appear
def t r a i n ( l a b e l e d s e n t e n c e s ) :

wscores = d e f a u l t d i c t ( lambda : Counter ( ) ) # doub ly nes ted s t r u c t u r e
c s c o r e s = Counter ( )
for sentence , l a b e l in l a b e l e d s e n t e n c e s :

c s c o r e s [ l a b e l ]+=1
for word in sentence . s p l i t ( ) :

wscores [ l a b e l ] [ word]+=1
wscores [ l a b e l ] [ wprobdenom]+=1

model = { ’ cprobs ’ :{} , ’ wprobs ’ :{}}
for l a b e l in c s c o r e s . keys ( ) :

model [ ’ cprobs ’ ] [ l a b e l ] = c s c o r e s [ l a b e l ] / len ( l a b e l e d s e n t e n c e s )
wprob = {}
for word , s co r e in wscores [ l a b e l ] . i tems ( ) :

wprob [ word ] = sco r e /wscores [ l a b e l ] [ wprobdenom ]
model [ ’ wprobs ’ ] [ l a b e l ] = wprob

return model

And a new, more appropriate classifier

def eva luate ( sentence , option , model ) :
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s co r e = model [ ’ cprobs ’ ] [ opt ion ]
for word in sentence . s p l i t ( ) :

s c o r e ∗= model [ ’ wprobs ’ ] [ opt ion ] [ word ]
return s co r e

6.1 Practicalities: smoothing

score *= model[’wprobs’][option][word] is going to be problematic if we have never
seen a word with a particular class. Solution: smoothing!

Laplace (add-1) smoothing: assume you’ve seen every word (even words you haven’t seen
before) with every class!

Assume you have 10k words in the training set of negative class without Laplace smooth-
ing:

P (amazing|negative) = 0/10, 000 = 0 (seen the word but not with class ’negative’)
P (blargh|negative) = 0/10, 000 = 0 (never seen the word)
Now you introduce a new term, ’OOV’. If you haven’t seen your test word during training,

pretend your word is ’OOV’. Then, since you add 1 for each vocabulary word and the ’OOV’
with each class, if your vocabulary size was 500, you now get:

P (amazing|negative) = 1/10, 501
and
P (blargh|negative) = 1/10, 501
You may want to actually introduce some ’OOV’ into your training set and replace words

that appear fewer than some k times with ’OOV’. This is so that your model can learn how
to behave with ’OOV’s.

If you use a subword tokenizer like BPE, you can reduce the reliance on ’OOV’ and
smoothing, but you can’t quite eliminate either one. Why not?

6.2 Practicalities: underflow

Recall:

for word in sentence . s p l i t ( ) :
s c o r e ∗= model [ ’ wprobs ’ ] [ opt ion ] [ word ]

Sentence may be long! Probabilities may be small! It’s very easy to run into underflow:
try this:
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Thankfully, logs are your friend, because of the following graph of log(x):

So instead rewrite the function as

from math import l og

def eva luate ( sentence , option , model ) :
s c o r e = log (model [ ’ cprobs ’ ] [ opt ion ] )
for word in sentence . s p l i t ( ) :

s c o r e += log (model [ ’ wprobs ’ ] [ opt ion ] [ word ] )
return s co r e

(Note the operator change)

7 problems with naive bayes assumption

We tolerated the naive bayes assumption: P (w1, w2, . . . , wn|y)P (y) = P (w1|y)P (w2|y), . . . , P (wn|y)P (y)
because it was useful, but we know that it is incorrect. Let’s take a closer look:

So, by chain rule, P (w1, w2, . . . , wn|y) = P (w1|y, w2, . . . , wn)P (w2|y, w3, . . . , wn) . . . P (wn|y)
but by the Naive Bayes assumption we restrict the conditional to just be y.

Of course, this is wrong! Some words are clearly not conditionally independent of each
other, i.e. P (San|y) ̸= P (San|y,Francisco).

A more intuitive example: Imagine if 9/10 people recommended a movie to you. What
if 8 of those 9 didn’t actually see the movie but just repeated whatever the 9th person said
to you?
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Naive Bayes may in fact be a decent assumption for the specific case we’ve seen it in,
and for most other words that occur alongside it (except for nearby words), but this is not
the only feature we might care about. In particular we may care about overlapping features
(e.g. the word, the word AND its predecessors/successors, prefix of the word, if the word is
on certain lists of words, etc.).

8 Representation of features and weights for multi-

class classification (esp. in Eisenstein)

We’re going to talk about features in general but more importantly we’re going to talk about
feature weights, and especially if you’ve taken ML before you may be a bit confused by the
notation in Eisenstein that I will borrow:

Sentence x: ‘it rocks’
Label possibilities: ‘Positive (+), Negative (−), Neutral (∅)’
Feature classes: “number of words” (nW ), “contains word ending in s” (∗s), “contains

’happy”’ (ch)
Feature function f :
f(x,+) = [2, 1, 0, 0, 0, 0, 0, 0, 0]
f(x,−) = [0, 0, 0, 2, 1, 0, 0, 0, 0]
f(x,∅) = [0, 0, 0, 0, 0, 0, 2, 1, 0]
For every feature we assign a weight. In the previous Naive Bayes discussion the features

were all of the form ‘contains x’ for word x (could actually be ‘number of times we see x’),
and the weights were P (x|y) (from the Naive Bayes assumption). As we see above, the
features can be more arbitrary than that. We can arrange our weights in a weight vector,
which by convention we’ll call θ:

θ = [P (nW |+), P (∗s|+), P (ch|+), P (nW |−), P (∗s|−), P (ch|−), P (nW |∅), P (∗s|∅), P (ch|∅)]
So given f and θ we can do ‘inference’ like so:
argmaxy∈Y θ · f(x, y)
Eisenstein uses Ψ(x, y) = θ · f(x, y); I call that the ‘model score’ or ‘model cost’; it’s the

model’s opinion of y being suitable for x.
What about P (y)? Note this is the background probabiliy of the class y. We can include

this as a term that is always on for the set of features associated with class y. It’s called the
‘bias’. So revising the above,

f(x,+) = [2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] and so on...

θ = [P (nW |+), P (∗s|+), P (ch|+), P (+),

P (nW |−), P (∗s|−), P (ch|−), P (−),

P (nW |∅), P (∗s|∅), P (ch|∅), P (∅)]

9 perceptron

I called θ ‘weights’ for good reason – who says they have to be probabilities? We can adopt
a ‘trial and error’ approach:
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theta = random weights

f o r each sentence , l a b e l in data :
i f we would choose some other l a b e l over the c o r r e c t one :

modify theta so we don ’ t do that
re turn theta

Here it is in a bit more gory detail using the framework from before:

import numpy as np

# note t ha t e va l ua t e needs to be r ewr i t t en to be more genera l ;
# l e f t as an e x e r c i s e to the reader , but shou ld inc l ude a f e a t u r e s ( ) method

def t r a i n ( l ab e l ed s en t en c e s , opt ions , f e a t s i z e ) :
# shou ld be a b e t t e r way to determine f e a t s i z e
# probab l y want to i n i t i a l i z e d i f f e r e n t l y
model = { ’ theta ’ : np . random( f e a t s i z e )} # or zeroe s
for i in range ( i t e r a t i o n s ) : # user−determined

for sentence , l a b e l in l a b e l e d s e n t e n c e s :
hyp = c l a s s i f y ( sentence , opt ions , model )
i f hyp != l a b e l :

model [ ’ theta ’ ] += f e a t u r e s ( sentence , l a b e l )− f e a t u r e s ( sentence , hyp )
return model

Quick illustration: Some feature type f1 has value 2, f2 has value 1, f3 has value 0.
There are three classes.

feats f(x, 1) f(x, 2) f(x, 3) θ
f11 2 0 0 0.3
f21 1 0 0 0.7
f31 0 0 0 0.8
f12 0 2 0 -0.2
f22 0 1 0 2.2
f32 0 0 0 -.4
f13 0 0 2 -4
f23 0 0 1 -4
f33 0 0 0 -4

Let’s say class 1 is correct. Given the table above, we get the following model costs:
Ψ(x, 1) = 1.3;Ψ(x, 2) = 1.8;Ψ(x, 3) = −12.
So update θ = θ + f(x, 1)− f(x, 2):
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feats f(x, 1) f(x, 2) f(x, 3) θ
f11 2 0 0 2.3
f21 1 0 0 1.7
f31 0 0 0 0.8
f12 0 2 0 -2.2
f22 0 1 0 1.2
f32 0 0 0 -.4
f13 0 0 2 -4
f23 0 0 1 -4
f33 0 0 0 -4

Class 2’s weights went down (if they affected the outcome) and class 1’s went up. Class
3’s weights weren’t involved at all. Now we get the following model costs:

Ψ(x, 1) = 6.3;Ψ(x, 2) = −3.2;Ψ(x, 3) = −12.
So the item is correctly classified.
Some things to discuss in the context of machine learning: averaging all θ at the end,

learning rates, and batch sizes.

10 loss function justification for perceptron

This seemed to work in the demo case above but has a very ad-hoc feel to it. (Side note:
oftentimes models are originally designed in an ad-hoc way and only later did the theory
work out. The original paper on perceptrons from 1957 has, AFAICT, nothing regarding the
following) Why does this work?

It’s worth considering the loss (often, though not always, written as ℓ) of the model.
Remember, the model conveys an opinion about how to classify2 that is to some degree
untrue. Loss can be thought of as ‘how wrong the model is.’ For perceptron the loss for
item i in a data set is (from Eisenstein):

ℓperceptron(θ;x
(i), y(i)) = max

y∈Y
θ · f(x(i), y)− θ · f(x(i), y(i))

The first term (maxy∈Y θ · f(x(i), y)) is exactly how we pick a label, and the second term
is the model score of the right label. If we picked the right label, the loss is zero. Otherwise,
the model score for the wrong label is higher, and the amount higher is how wrong we are.

Why do we have loss3? Because there’s something wrong with our model, i.e. θ. But we
can change that. How much should we change it? To minimize the loss, of course!

ℓ is an equation, and we can take its derivative with respect to θ. By adjusting θ in the
negative direction of the gradient we will have a lower loss on our training data.

Let’s assume ŷ is the hypothesis y and that it’s not the true label; what’s the derivative?
Well what’s the equation?

Let’s call f̂ f(x, ŷ) and f f(x, y) (I dropped the superscripts; too hard to type) and
make them subscriptable. Then ℓ = θ1f̂1 − θ1f1 + θ2f̂2 − θ2f2 + . . . + θnf̂n − θnfn. Then

2Or for regression models, the value associated with an input
3Assuming our data is separable, which see below
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∂ℓ/∂θ1 = f̂1 − f1 or to be more vector wise about it, ∂ℓ/∂θ = f̂ − f . So the negative of that
is f − f̂ .

You might wonder ‘isn’t there a closed form of this?’4 Yes, there is, in the sense of this
being a solution for a general linear model. Let the features be matrix A of dimension N×F
for N training data and F features, and let numeric (integral?) labels be a vector B (N×1)5.
Let the weights be vector W (F × 1). Then a linear model can be expressed A ×W = B.
Then W = A−1B but usually A−1 isn’t invertible, so W = (ATA)−1ATB.6 But for large N
that inverse operation is quite slow, so this isn’t usually done.

BTW, another way to look at what the perceptron is doing is finding the separating
hyperplane between differently labeled samples. This is easiest to visualize in the binary
case:

The weights define a line/plane/hyperplane along which the score is zero; we want all
the differently labeled examples to be divided by that separator.

11 support vector machine

Very briefly, perceptron updates are as follows:

ŷ = argmaxy θ · f(x(i), y)

If ŷ = y(i) then no update, otherwise

θ = θ + f(x(i), y(i))− f(x(i), ŷ)

Introduce cost function for making a mistake c(y(i), y); (for instance, let’s just say cost is
1 if y is wrong, 0 otherwise). Change the updates as follows:

ŷ = argmaxy θ · f(x(i), y) + c(y(i), y)

θ = λθ + f(x(i), y(i))− f(x(i), ŷ)7

4i.e. a single equation that can be solved to give ideal weights, as in Naive Bayes
5I think any unique value per label should do but FYI the literature I’m seeing, which is all over the place

on if this is even possible, at best shows examples with labels 1 and -1 only.
6(ATA)−1AT is a pseudo-inverse of A.
7In Eisenstein (1− λ) is used and this fits the derivation better.
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This is going to choose ŷ that are close to y(i) instead of useless updates with the correct
values, and it scales the previous weights to avoid overfitting. This is called support vector
machine and has a nice derivation that we would spend time on in an ML class, but the
upshot is it can work better than perceptron (see the Pang et al. paper in the reading, for
instance).

12 logistic regression

One nice thing about the naive bayes model is that it’s probabilistic, so if your classifier is
one part of a pipeline, you can tell the rest of the pipeline your confidence in your output
in a rational way. Ψ(x, y) has range (−∞,∞) which is less helpful. Another issue with
perceptron/svm is that they are only concerned with making sure the correct answer is
chosen/has large margin (in training).

Nobody forced us to keep Ψ(x, y) as the model score. A preferred model score would
be P (y|x), the conditional probability of the output given the input. How do we form a
probability distribution from a set of scores?

We can’t simply normalize:

Ψ(x, y)∑
y′∈Y Ψ(x, y′)

will not work. Why?
Instead we can use eΨ. Why?

So our new model cost will be

eΨ(x,y)∑
y′∈Y eΨ(x,y′)

(1)

This, by the way, is the ‘softmax’ function that comes up a lot in machine learning. It
does exactly the same job we are trying to do here: convert a set of numbers in the range
(−∞,∞) into a distribution while keeping the ordering the same. In fact, it generally ‘peaks’
the highest number; that’s why this can be thought of as a ‘soft’ form of the ‘max’ operator
(hence the name).

Now that we’ve got a distribution we have a natural loss function we can use: cross-
entropy! H(p, q) ≜ −Ep log q, where Ep is the expected value w/r/t p. Concretely:

H(p, q) = −
∑
x∈X

p(x) log q(x)
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Where here, q(x) = q(y|x) = Equation 1. From information theory this is the average
number of bits8 needed to identify an item if q is used to identify the item, but p is the
true distribution. So intuitively you want as small a cross-entropy as possible, and that
makes this a natural loss function. But what is p(y|x), the true distribution? A good choice
for supervised learning is to assume that the provided label is the truth and should always
occur and that all other labels should never occur. That means that our calculation of cross
entropy, which will in practice use training set X and label space Y :

−
∑

x,y∈X
∑

y′∈Y p(y′|x) log q(y′|x)
|X |

becomes

−
∑

x,y∈X log q(y|x)
|X |

since p(y|x) = 1 and ∀y′ ∈ Y \ y, p(y′|x) = 0.
Now considering a single item and substituting back in Equation 1:

− log
exp(θ · f(x, y))∑

y′∈Y exp(θ · f(x, y′))

−θ · f(x, y) + log
∑
y′∈Y

exp(θ · f(x, y′))

Now, the gradient:

∂ℓ/∂θ = −f(x, y) +
1∑

y′′∈Y exp(θ · f(x, y′′))
∑
y′∈Y

exp(θ · f(x, y′))f(x, y′)

∂ℓ/∂θ = −f(x, y) +
∑
y′∈Y

exp(θ · f(x, y′))∑
y′′∈Y exp(θ · f(x, y′′))

f(x, y′)

∂ℓ/∂θ = −f(x, y) +
∑
y′∈Y

q(y′|x; θ)f(x, y′)

That second term is the expectation of Y |X, which is to say, the probability (according
to the model) of a value times that value, summed over all possible values. Naturally, we
reduce θ by (some fraction of) this value.

Note that we are now considering not only how far away each wrong answer is from the
right answer, but how confident we are about each wrong answer. If we have low confidence
about an answer it will affect the loss very little.

8really, nats
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