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Outline

• Non-generative VLMs 
– Goal: Text/image understanding 
– Contrastive-based VLMs 
– VLMs from pretrained LLMs 

• Generative VLMs 
– Goal: Text/image understanding & generation 
– Diffusion Models 
– Visual tokenization based models
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Contrastive-based VLMs 

• Example: CLIP 
• Data: pairs of images and their captions 
• Networks: one text encoder and one image encoder 
• Loss function:
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VLMs from Pretrained LLMs

• Example: LLaVA 
• Data: pairs of images and their captions 
• Network: One vision encoder, one mapping network and one LLM 
• Loss function: language modeling
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VLMs from Pretrained LLMs
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LLaVA



Generative VLMs
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– Contrastive-based VLMs 
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– Goal: Text/image understanding & generation 
– Diffusion Models 
– Visual tokenization based models
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Distribution-based Generative Models

• Goal: learn to generate new data from samples 
– How? 

– To model the data distribution  
• Closed-form analytic solution 
• Exact density estimation via “black-box” deep neural networks 
• Density/distribution approximation

P(X)
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Closed-form Analytic Solution

• Providing a closed-form analytic solution of  
– Kernel-based approaches 
– Gaussian process 
– … 

• Pros 
– Theoretically grounded 
– Analytic solution for future derivations 

• Cons 
– Limited capacity 
– Unable to model complex data/distributions

P(X)
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Deep Generative Models w. Exact Density Estimation

• Exact density estimation via deep neural networks 
– Autoregressive models 
– Generative (normalizing) flows
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Deep 
Generative 

Models

X

P(X)
Value only!



Problems on Autoregressive Models for Image
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Problems:

• One pre-defined order


- No clear order for data like images

• Error propagation


- Limited context at beginning 

256

256

256 x 256 x 3 = 131072 pixels



Generative (Normalizing) Flows

• Modeling density via invertible mapping 
– Directly modeling the joint distribution of all variates in  
– Exact density estimation (no approximation)

X
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Generative (Normalizing) Flows
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Change of Variable formula:

pθ(x) = pΓ (fθ(x)) det ( ∂fθ(x)
∂x )

Γ ∼ Normal(0, I)X ∼ pθ(X)

X = f −1
θ (Γ)

Γ = fθ(X)

Normal Jacobian Matrix



Generative (Normalizing) Flows
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Change of Variable formula:

pθ(x) = pΓ (fθ(x)) det ( ∂fθ(x)
∂x )

Γ ∼ Normal(0, I)X ∼ pθ(X)

Generative Flow: A series of such f
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X
f1⟷
g1

H1
f2⟷
g2

H2
f3⟷
g3

⋯
fK⟷
gK

Γ

X = f −1
θ (Γ)

Γ = fθ(X)



Generative (Normalizing) Flows: Pros and Cons

• Modeling the exact distribution  
• No auto-regressive factorization 

• A large number of layers: invertible function  is very weak 
• Determinant calculation is expensive

P(X)

fi
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Distribution-based Generative Models

• Goal: learn to generate new data from samples 
– How? 

– To model the data distribution  
• Closed-form analytic solution 
• Exact density estimation via “black-box” deep neural networks 
• Density/distribution approximation

P(X)
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Problems of Exact Density Estimation

• What are the problems of exact density estimation? 
– The space of pixels is huge  
– The manifold/sub-space of natural images is sparse w.r.t the whole space 

 

– Waste too much model capacity on garbage images/noises

|V | = 256H×W×3

|V′ | / |V | ≈ 0
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H

W



Variational Auto-Encoders (VAEs)
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Z

X low-dimensional

• Learning a (low-dimensional) latent representation 
– The manifold/sub-space of natural images is sparse w.r.t the whole space 

 

– After down-project to low-dimension space of , natural images are less sparse

|V′ | / |V | ≈ 0
Z



Deep Generative Models w. Approx. Density Estimation

• Variational Auto-Encoders (VAEs) 
• Diffusion Models
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Latent Variables  
Z

p(Z)

q(Z |X)

p(X |Z)

prior

posterior

generator

p(X)



Variational Auto-Encoders

• Low-dimensional latent variable  
• Marginal distribution

Z ∈ ℝd
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p(X) = ∫Z
p(X |Z)p(Z)dz,

•How to compute/approximate the integral?

-Variational Inference



Variational Inference
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log p(X)

LL

= log∫Z
p(X |Z)p(Z)dz

Evidence Lower Bound (ELBO)
≥ Eq(Z|X)[log p(X |Z)] − KL(q(Z |X) | |p(Z))

ELBO
Posterior Generator Prior



Variational Inference
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log p(X)

LL

= log∫Z
p(X |Z)p(Z)dz

Evidence Lower Bound (ELBO)
≥ Eq(Z|X)[log p(X |Z)] − KL(q(Z |X) | |p(Z))

ELBO

= Eq(Z|X)[log p(X |Z)]

Reconstruction

− KL(q(Z |X) | |p(Z))

KL Regularizer



Variational Inference
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X

Evidence Lower Bound (ELBO)
log pθ(X)

LL

≥ Eqϕ(Z|X)[log pθ(X |Z)] − KL(qϕ(Z |X) | |pθ(Z))

ELBO

qϕ(Z |X)

Posterior

Z



Variational Inference

26
Z ∼ pθ(Z)

Prior

Evidence Lower Bound (ELBO)

qϕ(Z |X)

Posterior

log pθ(X)

LL

≥ Eqϕ(Z|X)[log pθ(X |Z)] − KL(qϕ(Z |X) | |pθ(Z))

ELBO

X



Variational Inference
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Evidence Lower Bound (ELBO)

qϕ(Z |X)

Posterior

pθ(X |Z)

Generator

Z ∼ pθ(Z)

Prior

log pθ(X)

LL

≥ Eqϕ(Z|X)[log pθ(X |Z)] − KL(qϕ(Z |X) | |pθ(Z))

ELBO

X



Diffusion Models



Diffusion Models

• Multi-step hierarchical VAEs 
• A chain of latent variables 

– , where each  has the same dimension of Z1, Z2, …, ZT Zt X
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Prior: P(ZT) ∼ 𝒩(0,I)

Posterior: q(Z1, Z2, …, ZT |X) =
T

∏
t=1

q(Zt |Zt−1), Z0 := X

q(Zt |Zt−1) ∼ 𝒩( 1 − βt ⋅ Zt−1, βtI)

Generator: 

Forward process

p(X, Z1, …, ZT) = p(ZT)
T

∏
t=1

p(Zt−1 |Zt) Reserve process

p(Zt−1 |Zt) ∼ 𝒩(μ(Zt), Σ(Zt))



Diffusion Models

• Training Objective 
– ELBO (the same as VAEs) 

• Sampling 
– Reverse process 

– ZT → ZT−1 → … → Z1 → X

30



Diffusion Models

• Diffusion models are good at generating high-quality images 
• Learning is slow and expensive
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Latent Diffusion Models

• Learning from pixels is hard 

• Combining VAE and Diffusion Models 
– Stage-I: a latent space VAE 
– Stage-II a diffusion model on top of the latent space
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Latent

Reps

VAE

Diffusion Model



Latent Diffusion Models
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Neural Networks in Diffusion Models
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Text Encoder

Transformer Encoder 
e.g. Encoder from T5

Diffusion Generator

U-Net or Transformer 
Train from scratch

Cross Attention



Unifying Text and Image in Diffusion Models
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Transfusion



Unifying Text and Image in Diffusion Models
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Outline

• Non-generative VLMs 
– Goal: Text/image understanding 
– Contrastive-based VLMs 
– VLMs from retrained LLMs 

• Generative VLMs 
– Goal: Text/image understanding & generation 
– Diffusion Models 
– Visual tokenization based models
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Visual Tokenization

• Mapping each image patch to a discrete token index 
• VQ-VAE
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Latent Variables  
Z

p(Z)

q(Z |X)

p(X |Z)

prior

posterior

generator

p(X)

Clustering procedure



Visual Tokenization
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Chameleon



Problems of Two-Stage Models

• Losing image information from latent space 
• Falling behind non-generative VLMs on understanding tasks
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Latent

Reps

(VQ-)VAE



Thanks! 
Q&A


