Vision Language Models (VLMs)

Xuezhe Ma (Max)

- Non-generative VLMs
 - Goal: Text/image understanding
 - Contrastive-based VLMs
 - VLMs from pretrained LLMs
- Generative VLMs
 - Goal: Text/image understanding & generation
 - Diffusion Models
 - Visual tokenization based models

Outline

Contrastive-based VLMs

- Example: CLIP
- Data: pairs of images and their captions
- Networks: one text encoder and one image encoder
- Loss function:

aptions one image encoder

$$\log\left(\frac{e^{\operatorname{CoSim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau}}{\sum_{k=1}^N e^{\operatorname{CoSim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau}}\right)$$

VLMs from Pretrained LLMs

- Example: LLaVA
- Data: pairs of images and their captions
- Network: One vision encoder, one mapping network and one LLM
- Loss function: language modeling

aptions e mapping network and one LLM g

LLaVA

VLMs from Pretrained LLMs

Generative VLMs

A photo of a dog

Text-to-Image Generator

- Non-generative VLMs
 - Goal: Text/image understanding
 - Contrastive-based VLMs
 - VLMs from retrained LLMs
- Generative VLMs
 - Goal: Text/image understanding & generation
 - Diffusion Models
 - Visual tokenization based models

Outline

Distribution-based Generative Models

- Goal: learn to generate new data from samples - How?
 - To model the data distribution P(X)
 - Closed-form analytic solution
 - Exact density estimation via "black-box" deep neural networks
 - Density/distribution approximation

Distribution-based Generative Models

- Goal: learn to generate new data from samples - How?
 - To model the data distribution P(X)
 - Closed-form analytic solution
 - Exact density estimation via "black-box" deep neural networks
 - Density/distribution approximation

Closed-form Analytic Solution

• Providing a closed-form analytic solution of P(X)

- Kernel-based approaches
- Gaussian process
- Pros

- ...

- Theoretically grounded
- Analytic solution for future derivations
- Cons
 - Limited capacity
 - Unable to model complex data/distributions

Distribution-based Generative Models

- Goal: learn to generate new data from samples - How?
 - To model the data distribution P(X)
 - Closed-form analytic solution
 - Exact density estimation via "black-box" deep neural networks
 - Density/distribution approximation

11

Deep Generative Models w. Exact Density Estimation

• Exact density estimation via deep neural networks

- Autoregressive models
- Generative (normalizing) flows

Deep Generative Models

Problems on Autoregressive Models for Image

256 x 256 x 3 = 131072 pixels

Problems:

- One pre-defined order
 - No clear order for data like images
- Error propagation
 - Limited context at beginning

13

Generative (Normalizing) Flows

Modeling density via invertible mapping

- Directly modeling the joint distribution of all variates in ${\boldsymbol X}$
- Exact density estimation (no approximation)

tion of all variates in X (imation)

14

Generative (Normalizing) Flows

 $X \sim p_{\theta}(X)$

Change of Variable formula:

 $p_{\theta}(x) = p_{\Gamma}(f_{\theta}(x)) \det$ Normal

$\Gamma \sim \text{Normal}(0, I)$

Generative (Normalizing) Flows

Change of Variable formula:

$$p_{\theta}(x) = p_{\Gamma}\left(f_{\theta}(x)\right) \left| \det\left(\frac{\partial f_{\theta}(x)}{\partial x}\right) \right|$$

Generative Flow: A series of such f

$$X \stackrel{f_1}{\longleftrightarrow} H_1 \stackrel{f_2}{\longleftrightarrow} H_2 \stackrel{f_3}{\longleftrightarrow} \cdots \stackrel{f_K}{\longleftrightarrow} \Gamma$$

$$g_1 \qquad g_2 \qquad g_3 \qquad g_K$$

$\Gamma \sim \text{Normal}(0, I)$

Generative (Normalizing) Flows: Pros and Cons

- Modeling the exact distribution P(X)
- No auto-regressive factorization
- A large number of layers: invertible function f_i is very weak
- Determinant calculation is expensive

17

Distribution-based Generative Models

- Goal: learn to generate new data from samples - How?
 - To model the data distribution P(X)
 - Closed-form analytic solution
 - Exact density estimation via "black-box" deep neural networks
 - Density/distribution approximation

Problems of Exact Density Estimation

- What are the problems of exact density estimation?
 - The space of pixels is huge $|V| = 256^{H \times W \times 3}$
 - The manifold/sub-space of natural images is sparse w.r.t the whole space $|V'|/|V| \approx 0$
 - Waste too much model capacity on garbage images/noises

Variational Auto-Encoders (VAEs)

• Learning a (low-dimensional) latent representation

- The manifold/sub-space of natural images is sparse w.r.t the whole space

- $|V'|/|V| \approx 0$
- After down-project to low-dimension space of Z, natural images are less sparse

low-dimensional

Deep Generative Models w. Approx. Density Estimation

- Variational Auto-Encoders (VAEs)
- Diffusion Models

- Low-dimensional latent variable $Z \in \mathbb{R}^d$
- Marginal distribution

Information Sciences Institute

- Variational Auto-Encoders

 How to compute/approximate the integral? - Variational Inference

Information Sciences Institute

 $\underbrace{\log p(X)}_{\mathbf{LL}} = \log \int_{Z} p(X|Z)p(Z)dz$

Evidence Lower Bound (ELBO)

Information Sciences Institute

$\geq \mathrm{E}_{q(Z|X)}[\log p(X|Z)] - \mathrm{KL}(q(Z|X)||p(Z))$

ELBO

$= \operatorname{E}_{q(Z|X)}[\log p(X|Z)] - \operatorname{KL}(q(Z|X)||p(Z))]$

KL Regularizer Reconstruction

Evidence Lower Bound (ELBO)

ĹĹ

 $q_{\phi}(Z|X)$

X

$\log p_{\theta}(X) \ge \mathbb{E}_{q_{\phi}(Z|X)}[\log p_{\theta}(X|Z)] - \mathrm{KL}(q_{\phi}(Z|X)||p_{\theta}(Z))$

ELBO

Evidence Lower Bound (ELBO)

LL

Posterior

 $\log p_{\theta}(X) \ge \mathrm{E}_{q_{\phi}(Z|X)}[\log p_{\theta}(X|Z)] - \mathrm{KL}(q_{\phi}(Z|X)||p_{\theta}(Z))$

ELBO

Prior

 $Z \sim p_{\theta}(Z)$

Evidence Lower Bound (ELBO) Posterior X $q_{\phi}(Z|X)$

Carnegie Mellon

- Multi-step hierarchical VAEs
- A chain of latent variables

- Z_1, Z_2, \ldots, Z_T , where each Z_t has the same dimension of X

 $P(Z_T) \sim \mathcal{N}(0,I)$ **Prior:**

Posterior:

$$q(Z_1, Z_2, \dots, Z_T | X) = \prod_{t=1}^T q(Z_t | Z_{t-1}), \quad Z_0 := X$$

 $q(Z_t | Z_{t-1}) \sim \mathcal{N}(\sqrt{1 - \beta_t} \cdot Z_{t-1}, \beta_t I)$

Generator:

$$p(X, Z_1, ..., Z_T) = p(Z_T) \prod_{t=1}^T p_{t=1}$$

 $p(Z_{t-1} | Z_t) \sim \mathcal{N}(\mu(Z_t), \Sigma(Z_t))$

 $p(Z_{t-1} | Z_t)$

Forward process

Reserve process

- Training Objective
 - ELBO (the same as VAEs)
- Sampling
 - Reverse process

 $-Z_T \to Z_{T-1} \to \dots \to Z_1 \to X$

• Diffusion models are good at generating high-quality images

• Learning is slow and expensive

31

Latent Diffusion Models

Learning from pixels is hard

- Combining VAE and Diffusion Models
 - Stage-I: a latent space VAE

Latent Diffusion Models

Neural Networks in Diffusion Models

e.g. Encoder from T5

Cross Attention

Diffusion Generator

Unifying Text and Image in Diffusion Models

Transfusion

Unifying Text and Image in Diffusion Models

the word 'START' on a blue t-shirt

A Dutch still life of an A wall in a royal castle. There are two paintings arrangement of tulips in on the wall. The one on a fluted vase. The lighting is subtle, casting genthe left a detailed oil painttle highlights on the flowing of the royal raccoon ers and emphasizing their king. The one on the right a detailed oil painting of delicate details and natuthe royal raccoon queen. ral beauty.

A transparent sculpture of a duck made out of glass.

A chromeplated cat sculpture placed on a Persian rug.

Three spheres made of glass falling into ocean. Water is splashing. Sun is setting.

an egg and a bird made of wheat bread

- Non-generative VLMs
 - Goal: Text/image understanding
 - Contrastive-based VLMs
 - VLMs from retrained LLMs
- Generative VLMs
 - Goal: Text/image understanding & generation
 - Diffusion Models
 - Visual tokenization based models

Outline

Visual Tokenization

• Mapping each image patch to a discrete token index

• VQ-VAE

p(X|Z) generator

Visual Tokenization

Chameleon

⁽a) Mixed-Modal Pre-Training

Problems of Two-Stage Models

- Losing image information from latent space
- Falling behind non-generative VLMs on understanding tasks

(VQ-)VAE

tent space Ms on understanding tasks

Thanks! Q&A