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Abstract. The availability of weighted finite-state string automata toolkits made
possible great advances in natural language processing. However, recent advances
in syntax-based NLP model design are unsuitable for these toolkits. To combat
this problem, we introduce a weighted finite-state tree automata toolkit, which in-
corporates recent developments in weighted tree automata theory and is useful for
natural language applications such as machine translation, sentence compression,
question answering, and many more.

1 Introduction

The development of well-founded models of natural language processing applications
has been greatly accelerated by the availability of toolkits for finite-state automata. The
influential observation of Kaplan & Kay, that cascades of phonological rewrite rules
could be expressed as regular relations (equivalent to finite-state transducers) [1], was
exploited by Koskenniemi in his development of the two-level morphology and accom-
panying system for its representation [2]. This system, which was a general program
for analysis and generation of languages, pioneered the field of finite-state toolkits [3].

Successive versions of the two-level compiler, such as that written by Karttunen and
others at Xerox [4], were used for large-scale analysis applications in many languages
[3]. Continued advances, such as work by Karttunen in intersecting composition [5] and
replacement [6, 7], eventually led to the development of the Xerox finite-state toolkit,
which superseded the functionality and use of the two-level tools [3].

Meanwhile, interest in adding uncertainty to finite-state models grew alongside in-
creased availability of large datasets and increased computational power. Ad-hoc meth-
ods and individual implementations were developed for integrating uncertainty into
finite-state representations [8,9], but the need for a general-purpose weighted finite-
state toolkit was clear [10]. Researchers at AT&T led the way with their FSM Li-
brary [11] which represented weighted finite-state automata by incorporating the the-
ory of semirings over rational power series cleanly into the existing automata theory.
Other toolkits, such as van Noord’s FSA utilities [12], the RWTH toolkit [13], and
the USC/ISI Carmel toolkit [14], provided additional interfaces and utilities for work-
ing with weighted finite-state automata. As in the unweighted case, the availability of
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this software led to many research projects that took advantage of pre-existing imple-
mentations [15-17] and the development of the software led to the invention of new
algorithms and theory [18, 19].

While these toolkits are very robust and capable of development of a wide array
of useful applications in NLP and beyond, they all suffer from the limitation that they
can only operate on string-based regular languages. In the 1990s, this was begrudgingly
accepted as sufficient — the power of computers and the relatively limited availability
of data prevented any serious consideration of weighted automata of greater complexity,
even though more complex automata models that better captured the syntactic nature
of language had long been proposed [20]. As NLP research progressed and computing
power and available data increased, researchers started creating serious probabilistic
tree-based models for such natural language tasks as translation [21-23], summarization
[24], paraphrasing [25], language modeling [26], and others. And once again, software
implementations of these models were individual, one-off efforts that took entire PhD
theses’ worth of work to create [27]. GRM, an extension of the AT&T toolkit that
uses approximation theory to represent higher-complexity structure such as context-
free grammars in the weighted finite-state string automata framework, was useful for
handling certain representations [28], but a tree automata framework is required to truly
capture tree models.

Knight and Graehl [29] put forward the case for the top-down tree automata theory
of Rounds [20] and Thatcher [30] as a logical sequel to weighted string automata for
NLP. All of the previously mentioned tree-based models fit nicely into this theory. Ad-
ditionally, as Knight and Graehl mention [29], most of the desired general operations in
a general weighted finite-state toolkit are applicable to top-down tree automata.

We thus propose and present a toolkit designed in the spirit of its predecessors but
with the tree, not the string, as its basic data structure. Tiburon is a toolkit for ma-
nipulation of weighted top-down tree automata. It is designed to be easy to construct
automata and work with them — after reading this article a linguist with no computer
science background or a computer scientist with only the vaguest notions of tree au-
tomata should be able to write basic acceptors and transducers. To achieve these goals
we have maintained simplicity in data format design, such that acceptors and transduc-
ers are very close to the way they appear in tree automata literature. We also provide
a small set of generic but powerful operations that allow robust manipulation of data
structures with simple commands. In subsequent sections we present an introduction to
the formats and operations in the Tiburon toolkit and demonstrate the powerful appli-
cations that can be easily built.

2 Related Work

The rich history of finite-state string automata toolkits was described in the previous
section. Tree automata theory is extensively covered in [31, 32]. Timbuk [33] is a toolkit
for unweighted finite state tree automata that has been used for cryptographic analysis.
It is based on ELAN [34], a term rewriting computational system. MONA [35] is an un-
weighted tree automata tool aimed at the logic community. Probabilistic tree automata
were first proposed by Magidor and Moran [36]. Weighted tree transducers were first



described by Fiilop and Vogler [37] as an operational representation of tree series trans-
ducers, first introduced by Kuich [38]

3 Trees

Tree automata represent sets of trees and tree relations. Formally, a tree is constructed
from a ranked alphabet Y. Each member of the alphabet is assigned one or more non-
negative integers, called a rank, and X', refers to all x € X' with rank m. A tree over
X/ is thus defined as:

— x, where x € X, or
- x(t1,...t;m), where z € X, and ty, ..., t,,, are trees over X.

Figure 1 shows a typical tree and its representation in Tiburon. In this example, NP
has rank 2, DT and NN have rank 1, and “the” and “boy” have rank 0.

NP
/7 N\

DT NN
I | NP(DT("the") NN("boy"))
"the" "boy"

(a) (b)

Fig. 1. (a) A typical syntax tree, and (b), its Tiburon representation

4 Regular Tree Grammars

As finite-state string acceptors recognize the same family of string languages as regu-
lar string grammars, so do finite-state tree acceptors recognize the same family of tree
languages as regular tree grammars (RTG) [39]. For simplicity we favor the grammar
representation, as tree acceptors must be written as hypergraphs, and this can be con-
fusing. RTGs look very similar to context-free grammars (CFG) (in fact, a CFG is a
special case of an RTG) and thus tend to be a very comfortable formalism. Analo-
gous to their string counterpart, a weighted regular tree grammar (WRTG) recognizes a
weighted, possibly infinite set of trees. Formally, a wRTG over X' and under semiring
(K, ®,®,0, 1) consists of a finite set N of nonterminal symbols disjoint from X, a start
symbol s € N, and a set P of productions of the forma — r,§, wherea € N, ris atree
over ¥ U N, and § € K is an associated weight. Informally, a wWRTG “works” similar
to a CFG in that from the start symbol, a sequence of rewrites is performed, replacing
nonterminals with trees as specified by the productions, until the generated/recognized
tree has no nonterminals remaining. To calculate the weight w of the resulting tree, start
with w = 1 and for each production p = a — r,d used, let w = w ® §. Figure 2(a)
shows a typical wRTG in Tiburon format. When weights are omitted on productions, a
weight of 1 is assumed. Figure 2(b) shows one of the trees that this grammar recognizes.
If we use the probability semiring, the tree has an associated weight of 0.16



q -> A(gq r) # 0.8 A
g -> B(r E) # 0.2 N\
r -> C(r) /B\C\
r->0D D E D

(a) (b)

Fig. 2. (a) A regular tree grammar, and (b), a tree in the grammar’s language

4.1 Generation

One fundamental operation on a wRTG is the generation of trees that are in the gram-
mar’s language. Naturally, one might want to know the tree of highest weight in a gram-
mar. Knuth’s extension [40] of Dijkstra’s classic best-path algorithm [41] to the hyper-
graph case efficiently finds the best path in the tree recognizer equivalent of a wRTG.
However, in many cases it is desirable to obtain a list of trees, ordered by weight. A
machine translation application may output a wRTG encoding billions of partial trans-
lations, and we may want to list the top scoring 25,000 trees for a subsequent re-ranking
operation. The -k operation in Tiburon adapts the k-best paths algorithm of Huang and
Chiang [42] to wRTGs. For example, given the grammar even.rtg depicted in Fig.
3(a), we issue this command:

java -jar tiburon.jar -k 5 even.rtg

The five derivations with highest weight in the grammar are returned, as depicted in
Fig. 3(b).

iy

ge -> A(ge go) # .
ge -> A(qgo ge) # .8
ge -> B(go) # .1
gqo -> A(go go) # .
go -> A(qe ge) # .
go -> B(ge) # .1
go -=> C # .1

(a) (b)

B(C): 0.0100

A(C B(C)): 0.0008
B(A(C C)): 0.0006
A(B(C) C): 0.0001
B(B(B(C))): 0.0001

N O

Fig. 3. (a) even.rtg, and (b) its top 5 derivations

Another operation, —g, stochastically generates trees from a grammar, probabilis-
tically choosing states to expand until a tree is obtained or a threshold of expansion
is reached. This operation is useful for diagnosis — designers of wRTGs may wish to
verify that their WRTGs generate trees according to the distribution they have in mind.
Given the grammar vic.rtg, depicted in Fig. 4(a), we issue the following command,
obtaining five random derivations, as seen in Fig. 4(b):

java -jar tiburon.jar -g 5 vic.rtg



q

q -> S(np vp)

np
np
dt
dt
3]
i3]
i3
nn
nn
vp

->

->

NP(dt nn)
NP(dt jj nn)
the

a

funny

blue
strange
fish

carrot

VP (v np)

v -> ate
v -> created

(a)

S(NP(the carrot) VP(ate NP(a fish))): 1.0000

S(NP(the fish) VP(created NP(a carrot))):

1.0000

S(NP(a carrot) VP(created NP(the funny fish))):

S(NP(the fish) VP(created NP(a carrot))):

S(NP(a fish) VP(created NP(a fish))): 1.0000

(b)

1.0000

1.0000

Fig.4. (a) vic.rtg, and (b) five random derivations

4.2 Intersection

Weighted intersection of wRTGs is useful for subdividing large problems into smaller
ones. As noted in [31], RTGs (and by extension wRTGs) are closed under intersec-
tion. Thus, a wRTG representing machine translation candidate sentences can be inter-
sected with another wRTG representing an English syntax language model to produce
re-weighted translations. As a simpler example, consider the grammar even.rtg de-
picted in Fig. 3(a), which produces trees with an even number of labels. The grammar
three.rtg depicted in Fig. 5(a) produces trees with a number of labels divisible by
three. We obtain a grammar which produces trees with a number of labels divisible by
six. by using the following command. The grammar is partly shown in Fig. 5(b).

java -jar tiburon.jar even.rtg three.rtg

Fig.5. (a) three.rtg, and (b) a portion of the intersection of even.rtg (see Fig.

-> A(ql ql)
-> A(g93 g2)
-> A(492 q3)
-> B(qg2)

-> A(92 g2)
-> A(ql g3)
-> A(g3 ql)
-> B(ql)

-> A(g3 g3)

> A(ql g2)
> A(9g2 ql)
> B(g3)

> C

HFHEXHERHFHRHRRHFHHER

(a)

ge_g3
ge_q3
ge_q3
ge_aq3
ge_g3
qe_q3
ge_q3
ge_q3
qge_g2
ge_g2
qe_q2
ge_q2
ge_q2
qe_g2
ge_g2

A(go_gl ge_gl) # 0.2000
A(go_g3 ge_g2) # 0.2000
A(go_g2 ge_g3) # 0.2000

B(go_q2) # 0.0250

A(ge_ql
A(ge_g3
A(ge_qg2
A(ge_g3
A(ge_gl
A(ge_qg2
A(qgo_g3
A(qo_qgl
A(qgo_g2

B(go_gl) # 0.0250

(b)

qo_ql)
qo_q2)
go_g3)
qo_ql)
qo_g3)
qo_q2)
ge_qgl)
ge_q3)
qe_q2)

3) and three.rtg. The complete grammar has 43 productions.
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4.3 Weighted Determinization

wRTGs produced by automated systems such as those used to perform machine transla-
tion [43] or parsing [44] frequently contain multiple derivations for the same tree with
different weight. This is due to the systems’ representation of their result space in terms
of weighted partial results of various sizes that may be assembled in multiple ways. This
property is undesirable if we wish to know the total probability of a particular tree in a
language. It is also frequently undesirable to have repeated results in a k-best list. The
-d operation invokes May and Knight’s weighted determinization algorithm for tree
automata [45]. As an example, consider the grammar undet.rtg, depicted in Fig.
6(a). This grammar has two differently-weighted derivations of the tree D (A B), as we
see when the top three derivations are obtained, depicted in Fig. 6(b). The following
command determinizes the grammar and attempts to return the top three derivations in
the resulting grammar:

java -jar tiburon.jar -d 5 -k 3 undet.rtg

Of course, since there are now only two derivations, only two trees are returned, as seen
in Fig. 6(c). The —-d 5 argument signifies the maximum time allowed for determiniza-
tion, in minutes. Determinization is, in the worst case, an exponential-time operation,
so it is helpful in practical matters to prevent overly lengthy operations.

t
t ->D(q r) # 0.2
t -> D(g s) #0.3 Warning: returning fewer
d _i : i g; D(A B): 0.0540 trees than requested
Z SR #o. D(A C): 0.0360 D(A B): 0.0660
- : D(A B): 0.0120 D(A C): 0.0360
s ->C#0.4 (2 B)

(@ (b) (©)

Fig. 6. (a) Undeterminized grammar undet.rtg, (b) k-best list without determiniza-
tion, and (c) k-best list with determinization

4.4 Pruning

In real systems using large grammars to represent complex tree languages, memory and
cpu time are very real issues. Even as computers increase in power, the added complex-
ity of tree automata forces practitioners to combat computationally intensive processes.
One way of avoiding long running times is to prune weighted automata before operating
on them. One technique for pruning finite-state (string) automata is to use the forward-
backward algorithm to calculate the highest-scoring path each arc in the automaton is
involved in, and then prune the arcs that are only in relatively low-scoring paths [46].
We apply this technique for tree automata by using an adaptation [47] of the inside-
outside algorithm [48]. The —p option with argument 2 removes productions from a
tree grammar that are involved in paths x times or more worse than the best path. The
—c option provides an overview of a grammar, and we can use this to demonstrate the
effects of pruning. The file c1s4.determ.rtg represents a language of possible
translations of a particular Chinese sentence. We inspect the grammar as follows:



java -jar tiburon.jar -m tropical -c cls4.determ.rtg
Check info:

113 states

168 rules

28 unique terminal symbols

2340 derivations

Note that the -m tropical flag is used because this grammar is weighted in the
tropical semiring. We prune the grammar and then inspect it as follows:

java -jar tiburon.jar -m tropical -p 8 -c cls4.determ.rtg
Check info:

111 states

158 rules

28 unique terminal symbols

780 derivations

Since we are in the tropical semiring, this command means “Prune all productions that
are involved in derivations scoring worse than the best derivation plus 8”. This roughly
corresponds to derivations with probability 2980 times worse than the best derivation.
Note that the pruned grammar has fewer than half the derivations of the unpruned gram-
mar. A quick check of the top derivations after the pruning (using -k) shows that the
pruned and unpruned grammars do not differ in their sorted derivation lists until the
455th-highest derivation.

5 Tree Transducers

Top-down tree transducers in Tiburon come in two varieties: tree-to-tree [20,30] and
tree-to-string [49]. They represent the weighted transformation of a tree language into
either a tree language or a string language, respectively. One can also think of trans-
ducers as representing a language of weighted tree/tree or tree/string pairs [50,51]. We
omit a formal definition of top-down tree transducers here; we refer the reader to [31]
for a thorough treatment.

Figure 7(a) shows a sample tree-to-tree transducer in Tiburon format. Like a tree
grammar, it has a start symbol and a set of optionally weighted productions. A trans-
duction operation walks down an input tree, transforming it and recursively processing
its branches. For example, the first production in Fig. 7(a) means: “When in state q,
facing an input subtree with root symbol A and two children about which we know
nothing, replace it with an output subtree rooted at R with two children. To compute the
output subtree’s left child, recursively process the input subtree’s right child beginning
in state r. To compute the output subtree’s right child, recursively process the input sub-
tree’s left child beginning in state r.” Figure 7(b) shows one transduction licensed by
this transducer. The format for tree-to-string transducers in Tiburon is similar to that for
tree-to-tree transducers; the sole differences are the right side of productions are strings,
not trees, and the special symbol *e* representing the empty string may be used.

Knight and Graehl [29] describe a wide hierarchy of transducer classes. Transduc-
ers in Tiburon are specifically top-down transducers with extended left-hand sides, also



q.A(x0: x1:) -> R(r.x1l r.x0) # 0.4 A
qg.A(x0: x1:) -> R(r.x0 s.x1) # 0.6 /\ s /\

g.C(x0:) -> L(g.x0) B C —_— T Q
r.C(x0:) -=> T # 0.8 N\ \

r.c(x0:) -> S # 0.2 D E D

r.C(x0: B(D x1:)) -> R(q.x0 r.xl)

r.B(x0: x1:E) -> Q

s.B -> X (a) (b)

Fig.7. (a) A tree-to-tree transducer, and (b), a weighted transduction licensed by the
transducer

known as xR in Knight and Graehl’s hierarchy, where “R” denotes “root-to-frontier”
(i.e. top-down) and the “x” denotes the extended left-hand sides. By extended, we
mean that the left side of productions can be trees of arbitrary depth. The sixth and
seventh productions in Fig. 7(a) show an example of extended left-hand side produc-
tions. Strictly speaking, the class xR refers to only tree-to-tree transducers; tree-to-string
transducers with the same characteristics are in the class xRs. There are no restrictions
on copying or deleting of variable children in xR or xRs; the seventh production shows
an example of a deleted child. The xR and xRs class of transducers were selected for
Tiburon because of their good fit with natural language applications [20, 29].

5.1 Forward and Backward Application

Application is the operation of passing a tree or grammar onto a transducer and obtain-
ing the resultant image. Tiburon supports forward application of a tree onto a tree-to-tree
or tree-to-string transducer with the —1 operation (for “left-side” transduction). If the
transducer in Fig. 7(a) is in a file xr1.trans the transduction performed in Fig. 7(b)
can be accomplished as follows:

echo "A(B(D E) C(D))" | java -jar tiburon.jar -1 -s xrl.trans
q2

g2 -> R(g0 gl) # 0.4000

ql -=> Q0 # 1.0000

q0 -> S # 0.2000

q0 -=> T # 0.8000

The -s flag tells Tiburon to expect the input tree from stdin instead of a file. As seen
above, the image of a tree onto a tree-to-tree transducer is a wRTG. The image of a
tree onto a tree-to-string transducer is a wWCFG, currently represented in Tiburon as a
one-state WRTG. The image of a wRTG onto the transducers supported in Tiburon is
not a WRTG [31] and as such is currently not supported. However, limited versions
of the transducers supported, such as transducers that do not copy their variables, do
produce wRTG images [31]. We will soon release the next version of Tiburon, which
will support the —r operation for backward application (the inverse image of a tree or
wRTG onto a transducer is a wRTG) and forward application of wRTGs onto limited
classes of transducers.



5.2 Composition

We often want to build a cascade of several small transducers and then programmati-
cally combine them into one. Unlike string transducers, general top-down tree transduc-
ers are not closed under composition, that is, a transduction carried out by a sequence
of two transducers may not be possible with a single transducer. Engelfriet showed that
top-down tree transducers that do not allow deletion or copying of variables (known
as RLN transducers; the L signifies “linear” and the “N” signifies “non-deleting”) are
closed under composition [52]. Tiburon, however, allows composition of tree-to-tree
transducers without checking if the transducers to be composed are composable. For
example, consider the transducer below, which is in a file xr2 . trans:

q

g.R(x0: x1:) -> R(R g.x1 R g.x0)
q.T -=> B # 0.6

g.T -=> D # 0.4

g.Q -> C

g.S -> E

qg.X => A

The following command composes xr1l.trans with xr2.trans and passes a tree
through them, returning the top three output derivations:

echo "A(B(D E) C(D))" | java -jar tiburon.jar -1ls -k 3 \
xrl.trans xr2.trans

R(RC R B): 0.1920

R(RC R D): 0.1280

R(RC R E): 0.0800

xrl.transisnot RLN,itis XRL (i.e. it has an extended left side and deletes variables
but does not copy), but in this case the two transducers are composable. We believe that
many of the xR transducers used in natural language applications will not suffer from
the general noncomposability of their class.

5.3 Training

A common task in building tree transducer models is the assignment of appropriate
weights to productions. We can use Expectation-Maximization training [53] to set the
weights of an unweighted tree transducer such that they maximize the likelihood of
a training corpus of tree/tree or tree/string pairs. Tiburon provides the -t operation,
which implements the technique described by Graehl and Knight for training tree trans-
ducers using EM [54].

As an example, consider training a machine translation model using bilingual in-
put/output pairs. Given the 261-production unweighted tree-to-string transducer de-
picted in Fig. 8(a) infile y1. ts, and the 15 tree/string pairs in Fig. 8(b) infiley1l.train,
we run this command to produce the transducer in Fig. 8(c):

java -jar tiburon.jar -t 20 yl.train yl.trans



q X(Garcia X(and associates)) a
q.X(x0: x1:) -> q.x0 g.x1 Garciayasociad_os ) Q.X(x0: x1:) -> q.x0 q.x1 # 0.8571
q.X(x0: x1:) -> q.x1 g.x0 X(X(Carlos (.Ear.cm) X(has X(lhree associates))) Q.X(x0: x1:) -> gq.x1 q.x0 # 0.1429
g.a -> *e* Carlos Garcia tiene tres asociados
> : g.are -> son # 0.5
g.a -> empresa X(X(his a.ssoclates) X(X(are not) strong)) q.are -> estan # 0.5
g.a -> Garcia susasqcladosno son fuertes q.the -> los # 0.8571428571428571
g.also -> asociados X(Ga.rcla X().((ha.s X(a company)) also)) q.the -> la # 0.14285714285714288
g.also -> *e* Garqla tamblen tiene una empresa g.not —> no # 1.0
g.also -> empresa X(X(its clients) X(are angry)) q.do -> *ex # 1.0
g.also -> enfadados sus clientes es_tan enfadados q.Garcia -> Garcia # 1.0
g.also -> estarll X(X(the _assouates)_ X(X(are also) angry)) q.enemies -> enemigos # 1.0
g.also -> Garcia los asomado_s tambien estan enfadad_os _ q.angry -> enfadados # 1.0
g.also -> los X(X(X(the clients) X(and X(the associates))) X(are enemies)) q.has -> tiene # 1.0
g.also -> tambien los clientes y los asociados son enemigos q.zanzanine -> zanzanina # 1.0
g.also -> tiene X(X(the company) X(has X(three groups)))
g.also -> una la empresa tiene tres grupos
g.and -> asociados X(X(its groups) X(are X(in Europe)))
g.and -> clientes sus grupos estan en Europa
g.and -> *e* X(X(the X(modern groups)) X(sell X(strong pharmaceuticals)))
g.and -> enemigos los grupos modernos venden medicinas fuertes

X(X(the groups) X(X(do not) X(sell zanzanine)))
los grupos no venden zanzanina

X(X(the X(small groups)) X(X(are not) modern))
los grupos pequenos no son modernos

(a) (b) (©

Fig. 8. (a) Portion of a 261-production unweighted tree-to-string transducer. (b) 15 (tree,
string) training pairs. (c) Portion of the 31-production weighted tree-to-string transducer
produced after 20 iterations of EM training (all other productions had probability 0).

6 Applications Using Tiburon

The translation model of Yamada and Knight [22] is a specialized model for predicting
a Japanese string given an English tree. The custom implementation of this model, built
by Yamada as part of his PhD thesis [27], took more than one year to complete. Graehl
and Knight [54] showed how this model could be represented as a four-state tree-to-
string transducer. We built an untrained transducer from Yamada’s model and trained it
on the same data used by Yamada and Knight to produce their alignment sentence pairs
[22]. The complete process took only 2 days. For details we refer the reader to [55].

Knight and Graehl [56] describe a cascade of finite-state string transducers that per-
form English-Japanese transliteration. Of course, a weighted string transducer toolkit
such as Carmel is well suited for this task, but Tiburon is suited for the job as well. By
converting string transducers into monadic (non-branching) tree transducers, we obtain
equivalent results. We used simple scripts to transform the string transliteration trans-
ducers into these monadic trees, and reproduced the transliteration operations. Thus, we
see how Tiburon may be used for string-based as well as tree-based applications.

7 Conclusion

We have described Tiburon, a general weighted tree automata toolkit, and described
some of its functions and their use in constructing natural language applications. Tiburon
can be downloaded at http://www.isi.edu/licensed-sw/tiburon/
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