
Backward and Forward
Bisimulation Minimisation of Tree Automata

Johanna Högberg1, Andreas Maletti2, and Jonathan May3

1 Dept. of Computing Science, Ume̊a University, S–90187 Ume̊a, Sweden
johanna@cs.umu.se

2 Faculty of Computer Science, Technische Universität Dresden,
D–01062 Dresden, Germany

maletti@tcs.inf.tu-dresden.de
3 Information Sciences Institute, University of Southern California, Marina Del Rey,

CA 90292
jonmay@isi.edu

Abstract. We improve an existing bisimulation minimisation algorithm
for tree automata by introducing backward and forward bisimulations
and developing minimisation algorithms for them. Minimisation via for-
ward bisimulation is also effective for deterministic automata and faster
than the previous algorithm. Minimisation via backward bisimulation
generalises the previous algorithm and is thus more effective but just as
fast. We demonstrate implementations of these algorithms on a typical
task in natural language processing.

Keywords: bisimulation, tree automata, minimisation, natural language
processing.

1 Introduction

Automata minimisation has a long and studied history. For deterministic finite
(string) automata (dfa) efficient algorithms exist. The well-known algorithm by
Hopcroft [1] runs in time O (n log n) where n is the number of states of the
input automaton. The situation is worse for non-deterministic finite automata
(nfa). The minimisation problem for nfa is PSPACE-complete [2] and cannot
even be efficiently approximated within the factor o(n) unless P = PSPACE [3].
The problem must thus be restricted to allow algorithms of practical value, and
one possibility is to settle for a partial minimisation. This was done in [4] for
non-deterministic tree automata (nta), which are a generalisation of nfa that
recognise tree languages and are used in applications such as model checking [5]
and natural language processing [6].

The minimisation algorithm in [4] was inspired by a partitioning algorithm due
to Paige and Tarjan [7], and relies heavily on bisimulation; a concept introduced
by R. Milner as a formal tool for investigating transition systems. Intuitively, two
states are bisimilar if they can simulate each other, or equivalently, the observable
behaviour of the two states must coincide. Depending on the capacity of the

Jan Holub and Jan Žd’árek (Eds.): CIAA 2007, LNCS 4783, pp. 109–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



110 J. Högberg , A. Maletti, and J. May

observer, we obtain different types of bisimulation. In all cases we assume that
the observer has the capacity to observe the final reaction to a given input (i.e.,
the given tree is either accepted or rejected), so the presence of bisimilar states
in an automaton indicates redundancy. Identifying bisimilar states allows us to
reduce the size of the input automaton, but we are not guaranteed to obtain the
smallest possible automaton. In this work we extend the approach of [4] in two
ways: (i) we relax the constraints for state equivalence, and (ii) we introduce
a new bisimulation relation that (with effect) can be applied to deterministic
(bottom-up) tree automata (dta) [8]. Note that [4] is ineffective on dta. Thus we
are able to find smaller automata than previously possible.

The two ways correspond, respectively, to two types of bisimulation: backward
and forward bisimulation [9]. In a forward bisimulation on an automaton M ,
bisimilar states are restricted to have identical futures (i.e., the observer can
inspect what will happen next). The future of a state q is the set of contexts
(i.e., trees in which there is a unique leaf labelled by the special symbol !)
that would be recognised by M , if the (bottom-up) computation starts with the
state q at the unique !-labelled node in the context. By contrast, backward
bisimulation uses a local condition on the transitions to enforce that the past
of any two bisimilar states is equal (i.e., the observer can observe what already
happened). The past of a state q is the language that would be recognised by
the automaton if q were its only final state.

Both types of bisimulation yield efficient minimisation procedures, which can
be applied to arbitrary nta. Further, forward bisimulation minimisation is useful
on dta. It computes the unique minimal dta recognising the same language as the
input dta (see Theorem 29). More importantly, it is shown in Theorem 27 that
the asymptotic time-complexity of our minimisation algorithm is O(rm log n),
where r is the maximal rank of the symbols in the input alphabet, m is the size
of the transition table, and n is the number of states. Thus our algorithm super-
sedes the currently best minimisation algorithm [8] for dta, whose complexity
is O(rmn). Backward bisimulation, though slightly harder to compute, has great
practical value as well. Our backward bisimulation is weaker than the bisimula-
tion of [4]. Consequently, the nta obtained by our backward bisimulation minimi-
sation algorithm will have at most as many states as the automata obtained by
the minimisation algorithm of [4]. In addition, the asymptotic time-complexity
of our algorithm (see Theorem 15), which is O

(
r2 m log n

)
, is the same as the

one for the minimisation algorithm of [4]. In [4] the run time O(rm′ log n) is
reported with m′ = rm.

Finally, there are advantages that support having two types of bisimulation.
First, forward and backward bisimulation minimisation only yield nta that are
minimal with respect to the respective type of bisimulation. Thus applying for-
ward and backwardbisimulation minimisation in an alternating fashion commonly
yields even smaller nta (see Sect. 5). Second, in certain domains only one type of
bisimulation minimisation is effective. For example, backward bisimulation min-
imisation is ineffective on dta because no two states of a dta have the same past.



Backward and Forward Bisimulation Minimisation 111

Including this Introduction, the paper has 6 sections. In Sect. 2, we define
basic notions and notations. We then proceed with backward minimisation and
the algorithm based on it. In Sect. 4, we consider forward bisimulation. Finally,
in Sect. 5 we demonstrate our algorithms on a typical task in natural language
processing and conclude in Sect. 6.

2 Preliminaries

We write N to denote the set of natural numbers including zero. The set {k, k+1,
. . . , n} is abbreviated to [k, n], and the cardinality of a set S is denoted by |S|.
We abbreviate Q × Q as Q2, and the inclusion qi ∈ Di for all i ∈ [1, k] as
q1 · · · qk ∈ D1 · · · Dk.

Let R and P be equivalence relations on S. We say that R is coarser than P
(or equivalently: P is a refinement of R), if P ⊆ R. The equivalence class (or
block) of an element s in S with respect to R is the set [s]R = {s′ | (s, s′) ∈ R}.
Whenever R is obvious from the context, we simply write [s] instead of [s]R.
It should be clear that [s] and [s′] are equal if s and s′ are in relation R, and
disjoint otherwise, so R induces a partition (S/R) = {[s] | s ∈ S} of S.

A ranked alphabet is a finite set of symbolsΣ =
⋃

k∈NΣ(k) which is partitioned
into pairwise disjoint subsets Σ(k). The set TΣ of trees over Σ is the smallest
language over Σ such that f t1 · · · tk is in TΣ for every f in Σ(k) and all t1, . . . , tk
in TΣ . To improve readability we write f [t1, . . . , tk] instead of f t1 · · · tk unless
k is zero. Any subset of TΣ is called a tree language.

A non-deterministic tree automaton (for short: nta) is a tuple M = (Q,Σ,
δ, F ), where Q is a finite set of states, Σ is a ranked alphabet, and δ is a finite
set of transitions of the form f(q1, . . . , qk) → qk+1 for some symbol f in Σ(k)
and q1, . . . , qk+1 ∈ Q. Finally, F ⊆ Q is a set of accepting states. To indicate
that a transition f(q1, . . . , qk) → qk+1 is in δ, we write f(q1, . . . , qk) δ→ qk+1. In
the obvious way, δ extends to trees yielding a mapping δ : TΣ → P(Q); i.e.,
δ(t) = {q | f(q1, . . . , qk) δ→ q and qi ∈ δ(ti) for all i ∈ [1, k]} for t = f [t1, . . . , tk]
in TΣ . For every q ∈ Q we denote {t ∈ TΣ | q ∈ δ(t)} by L(M)q. The tree
language recognised by M is L(M) =

⋃
q∈F L(M)q. Finally, we say that a state q

in Q is useless if L(M)q = ∅.

3 Backward Bisimulation

Foundation. We first introduce the notion of backward bisimulation for a nta M .
This type of bisimulation requires bisimilar states to recognise the same tree
language. Next, we show how to collapse a block of bisimilar states into just
a single state to obtain a potentially smaller nta M ′. The construction is such
that M ′ recognises exactly L(M). Finally, we show that there exists a coarsest
backward bisimulation on M , which leads to the smallest collapsed nta.



112 J. Högberg , A. Maletti, and J. May

Definition 1 (cf. [9, Definition 4.1]). Let M = (Q,Σ, δ, F ) be a nta, and let
R be an equivalence relation on Q. We say that R is a backward bisimulation
on M if for every (p, q) ∈ R, symbol f of Σ(k), and sequence D1, . . . , Dk ∈ (Q/R)

∨

p1···pk∈D1···Dk

f(p1, . . . , pk) δ→ p ⇐⇒
∨

q1···qk∈D1···Dk

f(q1, . . . , qk) δ→ q .

Example 2. Suppose we want to recognise the tree language L = {f [a, b], f [a, a]}
over the ranked alphabet Σ = Σ(2)∪Σ(0) with Σ(2) = {f} and Σ(0) = {a, b}. We
first construct nta N1 and N2 that recognise only f [a, b] and f [a, a], respectively.
Then we construct N by disjoint union of N1 and N2. In this manner we could
obtain the nta N = ([1, 6],Σ, δ, {3, 6}) with

a() δ→ 1 b() δ→ 2 f(1, 2) δ→ 3 a() δ→ 4 a() δ→ 5 f(4, 5) δ→ 6 .

Let P = {1, 4, 5}2∪{2}2∪{3}2∪{6}2. We claim that P is a backward bisimulation
on N . In fact, we only need to check the transitions leading to 1, 4, or 5 in
order to justify the claim. Trivially, the condition of Definition 1 is met for such
transitions because (i) a() → q is in δ and (ii) b() → q is not in δ for every state
q ∈ {1, 4, 5}. )*

Next we describe how a nta M = (Q,Σ, δ, F ) may be collapsed with respect to
an equivalence relation R on Q. In particular, we will invoke this construction
for some R that is a backward (in the current section) or forward (in Sect. 4)
bisimulation on M .

Definition 3 (cf. [9, Definition 3.3]). Let M = (Q,Σ, δ, F ) be a nta, and
let R be an equivalence relation on Q. The aggregated nta (with respect to
M and R), denoted by (M/R), is the nta ((Q/R),Σ, δ′, F ′) given by F ′ = {[q] |
q ∈ F} and

δ′ = {f([q1], . . . , [qk]) → [q] | f(q1, . . . , qk) δ→ q} .

The nta (M/R) has as many states as there are equivalence classes with respect
to R. Thus (M/R) cannot have more states than M .

Example 4. Let N be the nta and P the backward bisimulation of Example 2.
According to Definition 3, the aggregated nta (N/P), which should recognise
the language {f [a, b], f [a, a]}, is (Q′,Σ, δ′, F ′) where Q′ = {[1], [2], [3], [6]} and
F ′ = {[3], [6]} and

a() δ′
→ [1] b() δ′

→ [2] f([1], [2]) δ′
→ [3] f([1], [1]) δ′

→ [6] . )*

For the rest of this section, we let M = (Q,Σ, δ, F ) be an arbitrary but fixed nta
and R be a backward bisimulation on M . Next we prepare Corollary 6, which
follows from Lemma 5. This corollary shows that M and (M/R) recognise the
same tree language. The linking property is that the states q and [q] (in their
respective nta) recognise the same tree language. In fact, this also proves that
bisimilar states in M recognise the same tree language.



Backward and Forward Bisimulation Minimisation 113

Lemma 5 (cf. [9, Theorem 4.2]). For any state q of M , L((M/R))[q] =
L(M)q. )*

Corollary 6 (cf. [9, Theorem 4.2]). L((M/R)) = L(M). )*

Clearly, among all backward bisimulations on M the coarsest one yields the
smallest aggregated nta. Further, this nta admits only the trivial backward bisim-
ulation.

Theorem 7. There exists a coarsest backward bisimulation P on M , and the
identity is the only backward bisimulation on (M/P).

Minimisation algorithm. We now present a minimisation algorithm for nta that
draws on the ideas presented. Algorithm 1 searches for the coarsest backward
bisimulation R on M by producing increasingly refined equivalence relations
R0, R1, R2, . . . . The first of these is the coarsest possible candidate solution. The
relation Ri+1 is derived from Ri by removing pairs of states that prevent Ri

from being a backward bisimulation. The algorithm also produces an auxiliary
sequence of relations P0, P1, P2, . . . that are used to find these offending pairs.
When Pi eventually coincides with Ri, the relation Ri is the coarsest backward
bisimulation on M .

Before we discuss the algorithm, its correctness, and its time complexity, we
extend our notation.

Intuitively, obskq (f, D1 · · · Dk), the observation, is the number of f -transitions
that lead from blocks D1, . . . , Dk to q, and thus a local observation of the prop-
erties of q (cf. Definition 1). As we will shortly see, we discard (q, q′) from our
maintained set of bisimilar states should obsk

q and obsk
q′ disagree in the sense

that one is positive whereas the other is zero.

Definition 9. Let B be a subset of Q, i ∈ N, and L, L′ ⊆ P(Q)∗ be languages.

– Let r = max{k | Σ(k) += ∅}.
– The notation Li will abbreviate (Q/Pi)0 ∪ · · · ∪ (Q/Pi)r.
– We use L(B) to abbreviate {D1 · · ·Dk ∈ L | Di = B for some i ∈ [1, k]}.
– We write cut(B) for the subset (Q2 \ B2) \ (Q \ B)2 of Q × Q.
– We write split(L) for the set of all (q, q′) in Q × Q for which there exist

f ∈ Σ(k) and a word w ∈ L of length k such that exactly one of obsk
q (f, w)

and obsk
q′(f, w) is zero.

Definition 8. For every q ∈ Q and k ∈ N let obskq : Σ(k) × P (Q)k → N
be the mapping given by

obsk
q(f,D1 · · ·Dk) = |{q1 · · · qk ∈ D1 · · ·Dk | f(q1, . . . , qk)

δ→ q}| ,

for every f ∈ Σ(k) and D1 · · ·Dk ∈ P(Q)k !



114 J. Högberg , A. Maletti, and J. May

input: a nta M = (Q, Σ, δ, F );

initially:
P0 := Q × Q;
R0 := P0 \ split(L0);
i := 0;

while Ri "= Pi:
choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1 := Pi \ cut(Bi);
Ri+1 := Ri \ split(Li+1(Bi)) \ splitn(Li(Si), Li+1(Bi));
i := i + 1;

return: the nta (M/Ri);

Alg. 1. A minimisation algorithm for non-deterministic tree automata

– Finally, we write splitn(L, L′) for the set of all (q, q′) in Q × Q such that
there exist a symbol f in Σ(k) and a word D1 · · · Dk ∈ L of length k such
that

obsk
p(f, D1 · · ·Dk) =

∑

C1···Ck∈L′,
∀i∈[1,k] : Ci⊆Di

obsk
p(f, C1 · · · Ck)

holds for either p = q or p = q′ but not both. )*

Let us briefly discuss how the sets L0, L1, L2, . . . that are generated by Alg. 1
relate to each other. The set L0 contains a single word of length k, for each
k ∈ [0, r], namely Qk. Every word w of length k in the set Li+1 is in either in
Li, or of the form D1 · · · Dk, where Dj ∈ {Bi, Si \ Bi} for some j ∈ [1, k] and
Dl ∈ (Q/Pi+1) for every l ∈ [1, k].

Example 10. We trace the execution of the minimisation algorithm on the au-
tomaton N of Example 2. Let us start with the initialisation. State 2 can be
separated from [1, 6] since only obs02 is non-zero for the symbol b and the empty
word ε ∈ L0. Similarly, states 3 and 6 differ from 1, 4, and 5, as obs23 and obs26
are both non-zero for the symbol f and word QQ. Thus P0 = Q × Q and
R0 = {1, 4, 5}2 ∪ {2}2 ∪ {3, 6}2.

In the first iteration, we let S0 = Q and B0 = {2}. The algorithm can now
use the symbol f and word w = (Q \ {2}){2} in L1(B1) to distinguish between
state 3 and state 6, as obs23(f, w) > 0 whereas obs26(f, w) = 0. The next pair of
relations is then:

P1 = {2}2 ∪ (Q \ {2})2 and R1 = {1, 4, 5}2 ∪ {2}2 ∪ {3}2 ∪ {6}2 .

As the states in {1, 4, 5} do not appear at the left-hand side of any transition,
this block will not be further divided. Two more iterations are needed before P3
equals R3. )*



Backward and Forward Bisimulation Minimisation 115

Next we establish that the algorithm really computes the coarsest backward
bisimulation on M . We use the notations introduced in the algorithm.

Lemma 11. The relation Ri is a refinement of Pi, for all i ∈ {0, 1, 2, . . .}. )*

Lemma 11 assures that Ri is a proper refinement of Pi, for all i ∈ {0, . . . , t − 1}
where t is the value of i at termination. Up to the termination point t, we can
always find blocks Bi ∈ (Q/Ri) and Si ∈ (Q/Pi) such that Bi is contained in Si,
and the size of Bi is at most half of that of Si. This means that checking the
termination criterion can be combined with the choice of Si and Bi, because
we can only fail to choose these blocks if R and P are equal. Lemma 11 also
guarantees that the algorithm terminates in less than n iterations.

Theorem 12. Rt is the coarsest backward bisimulation on M . )*

Let us now analyse the running time of the minimisation algorithm on M . We
use n and m to denote the size of the sets Q and δ, respectively. In the complexity
calculations, we write δL, where L ⊆ P(Q)∗, for the subset of δ that contains
entries of the form f(q1, . . . , qk) → q, where f ∈ Σ(k), q ∈ Q, and q1 · · · qk is in
B1 · · · Bk for some B1 · · · Bk ∈ L. Our computation model is the random access
machine [10], which supports indirect addressing, and thus allows the use of
pointers. This means that we can represent each block in a partition (Q/R) as a
record of two-way pointers to its elements, and that we can link each state to its
occurrences in the transition table. Given a state q and a block B, we can then
determine [q]R in constant time, and δL, where L ⊆ P(Q)∗, in time proportional
to the number of entries.

To avoid pairwise comparison between states, we hash each state q in Q using
(obsk

q)k∈[0,r] as key, and then inspect which states end up at the same positions
in the hash table. Since a random access machine has unlimited memory, we can
always implement a collision free hash h; i.e., by interpreting the binary repre-
sentation of (obsk

q )k∈[0,r] as a memory address, and the time required to hash a
state q is then proportional to the size of the representation of (obskq )k∈[0,r].

The overall time complexity of the algorithm is

O
(
Init +

∑
i∈[0,t−1]

(Selecti + Cuti + Spliti + Splitni) + Aggregate
)

,

where Init, Selecti, Cuti, Spliti, Splitni, and Aggregate are the com-
plexity of: the initialisation phase; the choice of Si and Bi; the computation
of Pi \ cut(Bi); the computation of Ri \ split(Li+1(Bi)); the subtraction of
splitn(Li(Si),Li+1(Bi)); and the construction of the aggregated automaton
(M/Rt); respectively.

Lemma 13. Init and Aggregate are in O(rm + n), whereas, for every i in
[0, t − 1], Selecti is in O(1), Cuti is in O(|Bi|), and Spliti and Splitni are
in O

(
r |δLi+1(Bi)|

)
. )*

Lemma 14. For each q ∈ Q we have |{Bi | i ∈ [0, t − 1] and q ∈ Bi}| ≤ log n.
)*



116 J. Högberg , A. Maletti, and J. May

Theorem 15. The backward minimisation algorithm is in O
(
r2 m log n

)
. )*

Proof. By Lemma 13 the time complexity of the algorithm can be written as

O
(
(rm + n) +

∑
i∈[0,t−1]

(1 + |Bi| + r |δLi+1(Bi)| + r |δLi+1(Bi)|) + (rm + n)
)

.

Omitting the smaller terms and simplifying,we obtainO
(
r
∑

i∈[0,t−1] |δLi+1(Bi)|
)
.

According to Lemma 14, no state occurs in more than log n distinct B-blocks, so
no transition in δ will contribute by more than r log n to the total sum. As there are
m transitions, the overall time complexity of the algorithm is O(r2m log n). )*

We next compare the presented backward bisimulation to the bisimulation of [4].

Definition 16 (cf. [4, Sect. 5]). Let P be an equivalence relation on Q. We say
that P is an AKH-bisimulation on M , if for every (p, q) ∈ P we have (i) p ∈ F
if and only if q ∈ F ; and (ii) for every symbol f in Σ(k), index i ∈ [1, n], and
sequence D1, . . . , Dn of blocks in (Q/P)

∨

p1···pn∈D1···Dn,
pi=p

f(p1, . . . , pk) δ→ pn ⇐⇒
∨

q1···qn∈D1···Dn,
qi=q

f(q1, . . . , qk) δ→ qn

where n = k + 1. )*

Lemma 17. Every AKH-bisimulation on M is a backward bisimulation on M .
)*

The coarsest backward bisimulation R on M is coarser than the coarsest AKH-
bisimulation P on M . Hence (M/R) has at most as many states as (M/P). Since
our algorithm for minimisation via backward bisimulation is computationally as
efficient as the algorithm of [4] (see Theorem 15 and [4, Sect. 3]), it supersedes
the minimisation algorithm of [4].

4 Forward Bisimulation

Foundation. In this section we consider a computationally simpler notion of
bisimulation. Minimisation via forward bisimulation coincides with classical min-
imisation on deterministic nta. In addition, the two minimisation procedures
greatly increase their potential when they are used together in an alternating
fashion (see Sect. 5).

Definition 18. Let M = (Q,Σ, δ, F ) be a nta, and let R be an equivalence
relation on Q. We say that R is a forward bisimulation on M if for every (p, q)
in R we have (i) p ∈ F if and only if q ∈ F ; and (ii) for every symbol f in Σ(k),
index i ∈ [1, k], sequence of states q1, . . . , qk in Q, and block D in (Q/R)
∨

r∈D

f(q1, . . . , qi−1, p, qi+1, . . . , qk) δ→ r⇐⇒
∨

r∈D

f(q1, . . . , qi−1, q, qi+1, . . . , qk) δ→ r .

)*



Backward and Forward Bisimulation Minimisation 117

Note that Condition (ii) in Definition 18 is automatically fulfilled for all nullary
symbols. Let us continue Example 4 (the aggregated nta is defined in Defini-
tion 3).

Example 19. Recall the aggregated nta from Example 4. An isomorphic nta N
is given by ([1, 4],Σ, δ, {3, 4}) with

a() δ→ 1 b() δ→ 2 f(1, 2) δ→ 3 f(1, 1) δ→ 4 .

We have seen in Example 10 that N admits only the trivial backward bisimula-
tion. Let us consider P = {1}2 ∪ {2}2 ∪ {3, 4}2. We claim that P is a forward
bisimulation on N . Condition (i) of Definition 18 is met, and since (1, 2) /∈ P and
the states 3 and 4 only appear on the right hand side of δ→, also Condition (ii)
holds. Thus P is a forward bisimulation.

The aggregated nta (N/P) is (Q′,Σ, δ′, F ′) with Q′ = {[1], [2], [3]} and F ′ =
{[3]} and

a() δ′
→ [1] b() δ′

→ [2] f([1], [2]) δ′
→ [3] f([1], [1]) δ′

→ [3] . )*

For the rest of this section, we let M = (Q,Σ, δ, F ) be an arbitrary but fixed nta
and R be a forward bisimulation on M . In the forward case, a collapsed state
of (M/R) functions like the combination of its constituents in M (cf. Sect. 3). In
particular, bisimilar states need not recognise the same tree language. However,
(M/R) and M do recognise the same tree language.

Lemma 20 (cf. [9, Theorem 3.1]). L((M/R))[q] =
⋃

p∈[q] L(M)p for every
q ∈ Q. )*

Theorem 21 (cf. [9, Corollary 3.4]). L((M/R)) = L(M). )*

The coarsest of all forward bisimulations on M yields the smallest aggregated
nta. This nta cannot be reduced further by collapsing it with respect to some
forward bisimulation.

Theorem 22. There exists a coarsest forward bisimulation P on M , and the
identity is the only forward bisimulation on (M/P). )*

Minimisation algorithm. We now modify the algorithm of Sect. 3 so as to min-
imise with respect to forward bisimulation. As in Sect. 3 this requires us to
extend our notation. We denote by Ck

Q the of set of contexts over Q: the set
of k-tuples over Q ∪ {!} that contain the special symbol ! exactly once. We
denote by c[[q]], where c ∈ Ck

Q and q ∈ Q, the tuple that is obtained by replacing
the unique occurrence of ! in c by q.

Definition 23. For each state q in Q and k ∈ N, the map obsfk
q : Σ(k) × Ck

Q ×
P(Q) → N is defined by obsfkq (f, c, D) = |{q′ ∈ D | f(c[[q]]) δ→ q′}| for every
symbol f ∈ Σ(k), context c ∈ Ck

Q, and set D ⊆ Q of states. )*



118 J. Högberg , A. Maletti, and J. May

Like obsk
q , obsfk

q is a local observation of the properties of q. The difference here,
is that obsfkq (f, c, D) is the number of f -transitions that match the sequence c[[q]]
and lead to a state of D. In contrast, obsk

q looked from the other side of the rule.

Definition 24. Let D and D′ be subsets of Q.

– We write splitf (D) for the set of all pairs (q, q′) in Q × Q, for which there
exist f ∈ Σ(k) and c ∈ Ck

Q such that exactly one of obsfkq (f, c, D) and
obsfkq′(f, c, D) is non-zero.

– Similarly, we write splitfn(D, D′) for the set of all pairs (q, q′) in Q × Q,
for which there exist f ∈ Σ(k) and c ∈ Ck

Q such that obsfk
p(f, c, D) =

obsfkp(f, c, D′) holds for either p = q or p = q′ but not both. )*

We can now construct a minimisation algorithm based on forward bisimulation
by replacing the initialisation of R0 in Alg. 1 with R0 = ((Q\F )2∪F 2)\splitf (Q)
and the computation of Ri+1 with Ri+1 =

(
Ri \ splitf (Bi)

)
\ splitfn(Si, Bi).

Example 25. We show the execution of the minimisation algorithm on the nta N
from Example 19. In the initialisation of R0, states 3 and 4 are separated because
they are accepting. State 1 is distinguished as only obsf21 is non-zero on the
symbol f , context (!, 2) ∈ C2

[1,4], and block Q in P0. We thus have the relations
P0 = Q × Q and R0 = {1}2 ∪ {2}2 ∪ {3, 4}2. As neither 3 nor 4 appear on
a left-hand side of any transition, they will not be separated, so the algorithm
terminates with (M/R0) in the second iteration, when P0 has been refined to R0.

)*
Note that also the modified algorithm is correct and terminates in less than
n iterations where n is the cardinality of Q.

Theorem 26. Rt is the coarsest forward bisimulation on M . )*

The time complexity of the backward bisimulation algorithm is computed using
the same assumptions and notations as in Sect. 3. Although the computations
are quite similar, they differ in that when the backward algorithm would examine
every transition in δ of the form f(q1 · · · qk) → q, where qj ∈ Bi for some j ∈
[1, k], the forward algorithm considers only those transitions that are of the
form f(q1 · · · qk) → q, where q ∈ Bi. Since the latter set is on average a factor r
smaller, we are able to obtain a proportional speed-up of the algorithm.

Theorem 27. The forward minimisation algorithm is in O(rm log n). )*

Next, we show that forward bisimulation minimisation coincides with classical
minimisation and yields the minimal deterministic nta.

Definition 28. We say that M is deterministic (respectively, complete), if for
every symbol f in Σ(k), and sequence (q1, . . . , qk) ∈ Qk of states there exists
at most (respectively, at least) one state q in Q such that f(q1, . . . , qk) → q is
in δ. )*



Backward and Forward Bisimulation Minimisation 119

Clearly, the automaton (M/R) is deterministic and complete whenever M is so.
Moreover, there exists a unique minimal complete and deterministic nta N that
recognises the language L(M). The next theorem shows that N is isomorphic to
(M/R) if R is the coarsest forward bisimulation on M .

Theorem 29. Let M be a deterministic and complete nta without useless states.
Then (M/Rt) is a minimal deterministic and complete nta recognising L(M).

5 Implementation

In this section, we present some experimental results that we obtained by apply-
ing a prototype implementation of Alg. 1 to the problem of language modelling
in the natural language processing domain [11]. A language model is a formalism
for determining whether a given sentence is in a particular language. Language
models are particularly useful in many applications of natural language and
speech processing such as translation, transliteration, speech recognition, char-
acter recognition, etc., where transformation system output must be verified to
be an appropriate sentence in the domain language. Recent research in natural
language processing has focused on using tree-based models to capture syntactic
dependencies in applications such as machine translation [12,13]. Thus, the prob-
lem is elevated to determining whether a given syntactic tree is in a language.
Language models are naturally representable as finite-state acceptors. For effi-
ciency and data sparsity reasons, whole sentences are not typically stored, but
rather a sliding window of partial sentences is verified. In the string domain this
is known as n-gram language modelling. We instead model n-subtrees, fixed-size
pieces of a syntactic tree.

Table 1. Reduction of states and rules using backward, forward, and AKH bisimulation

trees original backward forward akh
states rules states rules states rules states rules

58 353 353 252 252 286 341 353 353
161 953 953 576 576 749 905 953 953
231 1373 1373 781 781 1075 1299 1373 1373
287 1726 1726 947 947 1358 1637 1726 1726

Table 2. Reduction of states and rules when combining backward and forward bisim-
ulation

trees original bw after fw fw after bw
states rules states rules states rules

58 353 353 185 240 180 235
161 953 953 378 534 356 512
231 1373 1373 494 718 468 691
287 1726 1726 595 874 563 842



120 J. Högberg , A. Maletti, and J. May

We prepared a data set by collecting 3-subtrees, i.e. all subtrees of height 3,
from sentences taken from the Penn Treebank corpus of syntactically bracketed
English news text [14]. An initial nta was constructed by representing each 3-
subtree in a single path. We then wrote an implementation of the forward and
backward variants of Alg. 1 in Perl and applied them to data sets of various
sizes of 3-subtrees. To illustrate that the two algorithms perform different min-
imisations, we then ran the forward algorithm on the result from the backward
algorithm, and vice-versa. As Table 2 shows, the combination of both algorithms
reduces the automata nicely, to less than half the size (in the sum of rules and
states) of the original.

Table 1 includes the state and rule count of the same automata after minimi-
sation with respect to AKH-bisimulation. As these figures testify, the conditions
placed on an AKH-bisimulation are much more restrictive than those met by a
backward bisimulation. In fact, Definition 16 is obtained from Definition 1 if the
two-way implication in Definition 1 is required to hold for every position in a
transition rule (i.e. not just the last), while insisting that the sets of accepting
and rejecting states are respected.

6 Conclusion

We have introduced a general algorithm for bisimulation minimisation of tree
automata and discussed its operation under forward and backward bisimulation.
The algorithm has attractive runtime properties and is useful for applications
that desire a compact representation of large non-deterministic tree automata.
We plan to include a refined implementation of this algorithm in a future version
of the tree automata toolkit described in [15].

Acknowledgements. The authors acknowledge the support and advice of
Frank Drewes and Kevin Knight. We thank Lisa Kaati for providing data and
information relevant to the details of [4]. We would also like to thank the referees
for extensive and useful comments. This work was partially supported by NSF
grant IIS-0428020.

References

1. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automation.
In: Kohavi, Z. (ed.) Theory of Machines and Computations, Academic Press, Lon-
don (1971)

2. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proc. 13th Annual Symp. Foundations
of Computer Science, pp. 125–129. IEEE Computer Society Press, Los Alamitos
(1972)

3. Gramlich, G., Schnitger, G.: Minimizing NFAs and regular expressions. In: Diek-
ert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer,
Heidelberg (2005)



Backward and Forward Bisimulation Minimisation 121

4. Abdulla, P.A., Högberg, J., Kaati, L.: Bisimulation minimization of tree automata.
In: IJFCS (2007)

5. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.
Springer, Heidelberg (2002)

6. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

7. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on
Computing 16, 973–989 (1987)

8. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata: Techniques and applications (1997), Available on
http://www.grappa.univ-lille3.fr/tata

9. Buchholz, P.: Bisimulation relations for weighted automata (unpublished, 2007)
10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
11. Jelinek, F.: Continuous speech recognition by statistical methods. Proc. IEEE 64,

532–557 (1976)
12. Galley, M., Hopkins, M., Knight, K., Marcu, D.: What’s in a translation rule? In:

Proc. 2004 Human Language Technology Conf. of the North American Chapter of
the Association for Computational Linguistics, pp. 273–280 (2004)

13. Yamada, K., Knight, K.: A syntax-based statistical translation model. In: Proc.
39th Meeting of the Association for Computational Linguistics, pp. 523–530. Mor-
gan Kaufmann, San Francisco (2001)

14. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of english: The Penn treebank. Computational Linguistics 19, 313–330 (1993)

15. May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Ibarra, O.H.,
Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg
(2006)

http://www.grappa.univ-lille3.fr/tata

	Backward and Forward Bisimulation Minimisation of Tree Automata
	Introduction
	Preliminaries
	Backward Bisimulation
	Forward Bisimulation
	Implementation
	Conclusion


