
Bisimulation Minimisation

for Weighted Tree Automata⋆

Johanna Högberg1, Andreas Maletti2, and Jonathan May3

1 Department of Computing Science, Ume̊a University
S–90187 Ume̊a, Sweden johanna@cs.umu.se

2 Faculty of Computer Science, Technische Universität Dresden
D–01062 Dresden, Germany maletti@tcs.inf.tu-dresden.de

3 Information Sciences Institute, University of Southern California
Marina Del Rey, CA 90292 jonmay@isi.edu

Abstract. We generalise existing forward and backward bisimulation
minimisation algorithms for tree automata to weighted tree automata.
The obtained algorithms work for all semirings and retain the time com-
plexity of their unweighted variants for all additively cancellative semi-
rings. On all other semirings the time complexity is slightly higher (linear
instead of logarithmic in the number of states). We discuss implementa-
tions of these algorithms on a typical task in natural language processing.

1 Introduction

By the Myhill-Nerode theorem there exists, for every regular string language L,
a unique (up to isomorphism) minimal deterministic finite automaton (dfa) that
recognises L. It was a breakthrough when Hopcroft [1] presented an O(n log n)
minimisation algorithm for dfa where n is the number of states. This still up-to-
date bound was obtained by partitioning the state space through a “process the
smaller half” strategy. However, in general there exists no unique minimal non-
deterministic finite automaton (nfa) recognising a given regular language. Meyer
and Stockmeyer [2] proved that minimisation of nfa is PSPACE-complete. The
minimisation problem for nfa with n states cannot even be efficiently approx-
imated within the factor o(n), unless P = PSPACE [3]. This meant that the
problem had to be simplified; either by restricting the domain to a smaller class
of devices, or by surrendering every hope of a non-trivial approximation bound.
Algorithms that minimise with respect to a bisimulation are examples of the
latter approach. The concept of bisimularity was introduced by Milner [4] as
a formal tool to investigate transition systems. Simply put, two transition sys-
tems are bisimulation equivalent if their behaviour—in response to a sequence of
actions—cannot be distinguished by an outside observer. Although bisimulation
equivalence, as interpreted for various devices, implies language equality, the op-
posite does not hold in general. We consider weighted tree automata (wta) [5],
which are a joint generalisation of tree automata [6, 7] and weighted automata [8].

⋆ This work was partially supported by NSF grant IIS-0428020

c©Springer Verlag, 2007.

Classical tree automata can then be seen as wta with weights in the Boolean
semiring, i.e. a transition has weight true if it is present, and false otherwise.

One type of bisimulation, called forward bisimulation in [9, 10], restricts
bisimilar states to have identical futures. The future of a state q is the tree
series of contexts that is recognised by the wta if the computation starts with
the state q and weight 1 at the unique position of the special symbol 2 in the
context. A similar condition is found in the Myhill-Nerode congruence for
a tree language [11] or even in the Myhill-Nerode congruence [12] for a tree
series. Let us explain it on the latter. Two trees t and u are equal in the Myhill-

Nerode congruence for a given tree series S over the field (A,+, ·, 0, 1), if there
exist nonzero coefficients a, b ∈ A such that for all contexts C we observe that
a−1 · (S, C[t]) = b−1 · (S, C[u]). The coefficients a and b can be understood as
the weights of t and u, respectively. In contrast to the Myhill-Nerode congru-
ence, a forward bisimulation requires a local condition on the tree representation.
The condition is strong enough to enforce equivalent futures, but not too strong
which is shown by the fact that, on a deterministic all-accepting [13] wta M over
a field [14] or a wta M over the Boolean semiring [10], minimisation via forward
bisimulation yields the unique (up to isomorphism) minimal deterministic wta
that recognises the same tree series as M .

The other type of bisimulation we will consider is called backward bisimu-
lation in [9, 10]. Backward bisimulation also uses a local condition on the tree
representation that enforces that the past of any two bisimilar states is equal.
The past of a state is the series that is recognised by the wta if that particular
state would be the only final state and its final weight would be 1 (i.e., the past
of a state q is the series that maps an input tree t to hµ(t)q; see Sect. 2).

The idea behind bisimulation minimisation is to discover and collapse states
that in some sense exhibit the same behaviour, thus freeing the input automaton
of redundancy. This implies a search for the coarsest relation on the state space
that meets the local conditions of the bisimulation relation that we are inter-
ested in. The O

(

n2 log n
)

minimisation algorithm for nfa by Paige & Tarjan [15]
could be called a forward bisimulation minimisation. Bisimulation minimisation
of tree automata is discussed in [10]. The paper [10] presents two minimisation
algorithms that are based on forward and backward bisimulation and run in
time O(rnr+1 log n) and O(r2nr+1 log n), respectively, where r is the maximal
rank of the input symbols and n is the number of states. In this paper, we gener-
alise these results to weighted tree automata and obtain minimisation algorithms
that work for arbitrary semirings in O(rnr+2) and O

(

r2nr+2
)

for the forward
and backward approach, respectively. The counting argument used in [15] and
later in [10] is no longer applicable: it was devised for the Boolean semiring and
does not generalise. However, when cancellative semirings are considered, we can
improve the algorithms to run in O(rnr+1 log n) and O(r2nr+1 log n) for the for-
ward and backward approach, respectively, by taking advantage of the “process
the smaller half” strategy of Hopcroft. When the forward algorithm is given a
deterministic wta, it yields an equivalent deterministic wta in time O(rnr+1),
which can be optimised to O(rnr log n) for additively cancellative semirings.

c©Springer Verlag, 2007.

There are advantages that support having two algorithms. First, forward and
backward bisimulation minimisation only yield a minimal wta with respect to
the corresponding bisimulation. Thus applying forward and backward bisimula-
tion minimisation in an alternating fashion commonly yields a yet smaller wta.
Since both minimisation procedures are very efficient, this approach also works
in practice. For the problem of tree language model minimisation, discussed in
Sect. 5, we minimised our candidate wta in an alternating fashion and found
that we were able to get equally small wta after two iterations beginning with
backward or three iterations beginning with forward. Our implementation typi-
cally ran in Θ(rnr+1 log n)

0.36
and Θ(r2nr+1 log n)

0.36
for forward and backward,

respectively; well below the theoretical upper bound.
Second, in certain domains one type of bisimulation minimisation is more

effective. For example, backward bisimulation is ineffective on deterministic wta
because no two states have the same past4. On the other hand, wta recognis-
ing languages of trees that vary greatly in the root but little in the leaves (for
example, syntax parses of natural language sentences), will benefit more from
backward bisimulation minimisation than forward. When presented with an un-
known wta, we know no way to say for certain which method of minimisation is
superior, so it is beneficial to have both.

The bisimulation introduced in [16] can be seen as a combination of backward
and forward bisimulation. Containing the restrictions of both, it is less efficient
than backward bisimulation when applied to the minimisation of nondeterminis-
tic automata, but just as expensive to calculate, and unlike forward bisimulation
it does not yield the standard algorithm when applied to deterministic automata.
The pair of algorithms presented in this paper thus supersedes that of [16].

2 Preliminaries

We write IN to denote the set of natural numbers including zero. The subset
{k, k + 1, . . . , n} of IN is abbreviated to [k, n], and the cardinality of a set S is
denoted by |S|. We abbreviate the Cartesian product S × · · · × S with n factors
by Sn, and the inclusion di ∈ Di for all i ∈ [1, k] as d1 · · · dk ∈ D1 · · ·Dk.

Let P and R be equivalence relations on S. We say that P is coarser than R
(or equivalently: R is a refinement of P), if R ⊆ P. The equivalence class (or
block) of an element s ∈ S with respect to R is the set [s]R = {s′ | (s, s′) ∈ R}.
Whenever R is obvious from the context, we simply write [s] instead of [s]R.
It should be clear that [s] and [s′] are equal if s and s′ are in relation R, and
disjoint otherwise, so R induces a partition (S/R) = {[s] | s ∈ S} of S.

A semiring is a tuple (A,+, ·, 0, 1) such that (A,+, 0) is a commutative
monoid, (A, ·, 1) is a monoid, · distributes (both-sided) over +, and 0 is an
absorbing element with respect to · . We generally assume that · binds stronger
than +, so a + b · c is interpreted as a + (b · c). The semiring A = (A,+, ·, 0, 1)
is said to be cancellative if a + b = a + c implies that b = c for every a, b, c ∈ A.

4 The alteration technique is thus useless for deterministic devices.

c©Springer Verlag, 2007.

A ranked alphabet is a finite set of symbols Σ =
⋃

k∈IN Σ(k) which is par-
titioned into pairwise disjoint subsets Σ(k). The set TΣ of trees over Σ is the
smallest set of strings over Σ such that f t1 · · · tk in TΣ for every f in Σ(k) and
all t1, . . . , tk in TΣ . We write f [t1, . . . , tk] instead of f t1 · · · tk unless k is zero.

A tree series over the ranked alphabet Σ and semiring A = (A,+, ·, 0, 1)
is a mapping from TΣ to A. The set of all tree series over Σ and A is de-
noted by A〈〈TΣ〉〉. Let S ∈ A〈〈TΣ〉〉. We write (S, t) with t ∈ TΣ for S (t). A
weighted tree automaton M (for short: wta) [17] is a tuple (Q,Σ,A, F, µ), where
Q is a finite nonempty set of states; Σ is a ranked alphabet (of input sym-
bols); A = (A,+, ·, 0, 1) is a semiring; F ∈ AQ is a final weight distribution; and

µ = (µk)k∈IN with µk : Σ(k) → AQk×Q is a tree representation.
We define hµ : TΣ → AQ for every σ ∈ Σ(k), q ∈ Q, and t1, . . . , tk ∈ TΣ by

hµ(σ[t1, . . . , tk])q =
∑

q1,...,qk∈Q

µk(σ)q1···qk,q · hµ(t1)q1
· . . . · hµ(tk)qk

.

Finally, the tree series recognised by M is given by (‖M‖, t) =
∑

q∈Q Fq · hµ(t)q

for every tree t ∈ TΣ and denoted by ‖M‖.

3 Forward Bisimulation

Foundation. Let M = (Q,Σ,A, F, µ) be a wta. Roughly speaking, a forward
bisimulation on M is an equivalence relation on Q such that equivalent states
react equivalently to future inputs. We enforce this behaviour with only a local
condition on µ and F . Let 2 /∈ Q. The set CQ

(k) of contexts (over Q) is given

by {w ∈ (Q ∪ {2})k | w contains 2 exactly once}, and for every context c and
state q we write c[[q]] to denote the word that is obtained from c by replacing
the special symbol 2 with q. Henceforth, we assume that the special symbol 2

occurs in no set of states of any wta.

Definition 1 (cf. [9, Definition 3.1]). Let R ⊆ Q × Q be an equivalence
relation. We say that R is a forward bisimulation on M if for every (p, q) in R
we have (i) F (p) = F (q) and (ii)

∑

r∈D µk(σ)c[[p]],r =
∑

r∈D µk(σ)c[[q]],r for

every σ ∈ Σ(k), block D in (Q/R), and context c of CQ

(k).

Example 2. Let ∆ = ∆(0) ∪ ∆(2) be the ranked alphabet where ∆(0) = {α}
and ∆(2) = {σ}. The mapping zigzag from T∆ to IN is recursively defined for
every t1, t2, and t3 in T∆ by zigzag(α) = 1 and zigzag(σ[α, t2]) = 2 and
zigzag(σ[σ[t1, t2], t3]) = 2 + zigzag(t2). Consider the wta N = (P,∆, IN, G, ν)
with the semiring IN = (IN,+, ·, 0, 1) and P = {l, r, L,R,⊥}, G(l) = G(L) = 1
and G(p) = 0 for every p ∈ {r,R,⊥}, and

1 = ν0(α)ε,l = ν0(α)ε,R = ν0(α)ε,⊥ = ν2(σ)r⊥,l = ν2(σ)⊥l,r = ν2(σ)⊥⊥,l

1 = ν2(σ)R⊥,L = ν2(σ)⊥L,R = ν2(σ)⊥⊥,R = ν2(σ)⊥⊥,⊥ .

All remaining entries in ν are 0. A straightforward induction shows that N
recognises zigzag. Let us consider P = {l, L}2∪{r,R}2∪{⊥}2. We claim that P

c©Springer Verlag, 2007.

is a forward bisimulation on N . Obviously, G(l) = G(L) and G(r) = G(R).
It remains to check Condition (ii) of Definition 1. We only demonstrate the
computation on the symbol σ, the context ⊥2 and the block {r,R}.

∑

p∈{r,R}

ν2(σ)⊥l,p = 1 =
∑

p∈{r,R}

ν2(σ)⊥L,p �

Let R be a forward bisimulation on M . We identify bisimilar states in order
to reduce the size of the wta. Next we present how to achieve this. In essence,
we construct a wta (M/R) that uses only one state per equivalence class of R.

Definition 3 (cf. [9, Definition 3.3]). The forward aggregated wta (M/R)
is the wta ((Q/R) , Σ,A, F ′, µ′) with F ′([q]) = F (q) for every state q of Q, and
µ′

k(σ)[q1]···[qk],D =
∑

r∈D µk(σ)q1···qk,r for every σ ∈ Σ(k), word q1 · · · qk ∈ Qk,
and block D ∈ (Q/R).

Example 4. Recall the wta N and the forward bisimulation P of Example 2. Let
us compute (N/P) = (P ′,∆, IN, G′, ν′). We obtain P ′ = {[l], [r], [⊥]}, the final
weights G′([l]) = 1 and G′([r]) = G′([⊥]) = 0 and the nonzero entries

1 = ν′
2(σ)[r][⊥],[l] = ν′

2(σ)[⊥][l],[r] = ν′
2(σ)[⊥][⊥],[l] = ν′

2(σ)[⊥][⊥],[r] = ν′
2(σ)[⊥][⊥],[⊥]

1 = ν′
0(α)ε,[l] = ν′

0(α)ε,[r] = ν′
0(α)ε,[⊥] . �

We should verify that the recognised tree series remains the same. The proof
of this property is prepared in the next lemma. It essentially states that a col-
lapsed state of (M/R) works like the combination of its constituents in M .

Lemma 5 (cf. [9, Theorem 3.1]). Let (M/R) = (Q′, Σ,A, F ′, µ′). Then
hµ′(t)D =

∑

q∈D hµ(t)q for every tree t ∈ TΣ and block D ∈ (Q/R).

The final step establishes that ‖(M/R)‖ = ‖M‖. Consequently, collapsing a
wta with respect to some forward bisimulation preserves the recognised series.

Theorem 6 (cf. [9, Theorem 3.1]). ‖(M/R)‖ = ‖M‖.

The coarser the forward bisimulation R on M , the smaller (M/R). Our aim
is thus to find the coarsest forward bisimulation on M . First we show that a
unique coarsest forward bisimulation on M exists.

Theorem 7. There exists a coarsest forward bisimulation P on M , and (M/P)
admits only the identity as forward bisimulation.

The previous theorem justifies the name forward bisimulation minimisation;
given the coarsest forward bisimulation P on M , the wta (M/P) is minimal with
respect to forward bisimulation.

Algorithm. We now present a minimisation algorithm for wta that draws on
the ideas presented in the previous section. Algorithm 1 searches for the coarsest
forward bisimulation R on the input wta M by producing increasingly refined
equivalence relations R0,R1,R2, The first of these is the coarsest candidate
solution that respects F . The relation Ri+1 is derived from Ri by removing pairs

c©Springer Verlag, 2007.

input: A wta M = (Q, Σ,A, F, µ);

initially: P0 := Q × Q;

R0 := ker(F) \ split (Q);
i := 0;

while Ri 6= Pi: choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1 := Pi \ cut (Bi);
Ri+1 :=

`

Ri \ split (Bi)
´

\ split (Si \ Bi);
i := i + 1;

return: (M/Ri);

Algorithm 1. A forward bisimulation minimisation algorithm for wta.

of states that prevent Ri from being a forward bisimulation. The algorithm also
produces an auxiliary sequence of relations P0,P1,P2, . . . that are used to find
these offending pairs. Termination occurs when Ri and Pi coincide. At this point,
Ri is the coarsest forward bisimulation on M .

Before we discuss the algorithm, its correctness, and its time complexity, we
extend our notation. For the rest of this section, let M = (Q,Σ,A, F, µ) be an
arbitrary but fixed wta. We use the following shorthands in Alg. 1.

Definition 8. Let B be a subset of Q. We write

– cut (B) for the subset (Q2 \ B2) \ (Q \ B)2 of Q × Q, and
– split (B) for the set of all pairs (p, q) in Q × Q such that

∑

r∈B µk(σ)c[[p]],r

and
∑

r∈B µk(σ)c[[q]],r differ for some σ ∈ Σ(k) and c ∈ CQ

(k).

Example 9. Let N = (P,∆, IN, G, ν) be the wta of Example 2 that recognises
the tree series zigzag. We will show the iterations of the algorithm on this
example wta. Let us start with the initialisation: Clearly, P0 is P × P , and R0

is the union {l, L}2 ∪ {r,R}2 ∪ {⊥}2. In the first iteration, we select S0 = P
and B0 = {l, L} and thus compute P1 to be {l, L}2 ∪ {r,R,⊥}2, and R1 to be
R0. Obviously, P1 is still different from R1, so the algorithm enters a second
iteration. We now let S1 = {r,R,⊥} and B1 = {⊥}, which yields R2 = P2, so
the algorithm terminates and returns the aggregated wta (N/R2). �

We henceforth abbreviate |Q| to n, and denote by r the maximum k such
that Σ(k) is non-empty. As we will later argue, there exists a t < n such that
Alg. 1 terminates when i = t. We use the notations introduced in the algorithm
when we set out to prove correctness and termination.

Lemma 10. The relation Ri is a refinement of Pi for all i ∈ [0, t].

Lemma 10 ensures that Ri is a proper refinement of Pi, for all i ∈ [0, t − 1].
Since Pi+1 is in turn, by definition, a proper refinement of Pi, termination is
guaranteed in less than n iterations. It follows that, up to the termination point t,
we can always find blocks Bi ∈ (Q/Ri) and Si ∈ (Q/Pi) such that Bi is contained
in Si, and the size of Bi is at most half of that of Si.

c©Springer Verlag, 2007.

Theorem 11. Algorithm 1 returns the minimal wta (M/P) with respect to for-
ward bisimulation. Equivalently; P is the coarsest forward bisimulation on M .

We now analyse the running time of Alg. 1. We use

m =
∑

k∈[0,r]
|{(σ, q1 · · · qk, q) ∈ Σ(k) × Qk × Q | µk(σ)q1···qk,q 6= 0}| .

to denote the size of µ. In this paper, we assume that the tree representation is
not sparse, i.e. that it contains some Ω

(
∑

k∈[0,r] n
k+1

)

entries. For a discussion

of how sparse representations affect the performance of the algorithm, see [14].
We also assume that semiring addition can be performed in constant time. We
denote by µf

B the part of µ that contains entries of the form µk(σ)q1···qk,q, where
q ∈ B. The overall time complexity of the algorithm is

O
(

Init
f +

∑

i∈[0,t−1]

(

Selecti + Cuti + Split
f
i

)

+ Aggregate
f
)

,

where Init
f , Selecti, Cuti, Split

f
i, and Aggregate

f are the complexity of:
(i) the initialisation phase; (ii) the choice of Si and Bi; (iii) the computation of
Pi+1; (iv) the computation of Ri+1, and (v) the construction of the aggregated
automaton (M/Rt); respectively.

Lemma 12. Init
f and Aggregate

f are both in O(m + n), whereas Selecti

is in O(1), Cuti is in O(|Bi|), and Split
f
i is in O(r |µf

Si
|).

In the worst case, |Si| equals n − i, which means that
∣

∣µf
Si

∣

∣ is close to m.

Theorem 13. Algorithm 1 has time complexity O(rmn).

We now consider a simplification of Alg. 1 for cancellative semirings. In
essence, the second split in the computation of Ri+1 can be omitted.

Lemma 14. When the underlying semiring is cancellative, we can replace the
computation of Ri+1 in Alg. 1 simply by Ri+1 = Ri \ split (Bi).

The optimised algorithm thus only splits against the block Bi, for each
i ∈ [0, t−1]. As no state occurs in more than log n distinct B-blocks, we are able
to obtain a lower time complexity:

Theorem 15. Alg. 1 optimised for cancellative semirings is in O(rm log n).

4 Backward Bisimulation

Foundation. Let M = (Q,Σ,A, F, µ) be a wta. In this section we investigate
backward bisimulations [9]. We introduce the following notation. Let Π be a
partition of Q. We write Π(k) for the set {D1 × · · · × Dk | D1, . . . ,Dk ∈ Π} for
every k ∈ IN. Moreover, we write Π(≤k) for the set Π(0) ∪ · · · ∪ Π(k).

c©Springer Verlag, 2007.

Definition 16 (cf. [9, Definition 4.1]). Let R be an equivalence relation on Q.
If

∑

w∈L µk(σ)w,p =
∑

w∈L µk(σ)w,q for every (p, q) ∈ R, symbol σ in Σ(k), and
word L ∈ (Q/R)(k), then we say that R is a backward bisimulation on M .

Example 17. Let N = (P,∆, IN, G, ν) where P = {l, r, L,R,⊥}, ∆ is as in Ex-
ample 2, and G(l) = 1 and G(p) = 0 for every p ∈ {r, L,R,⊥} and

1 = ν0(α)ε,l = ν0(α)ε,r = ν0(α)ε,L = ν0(α)ε,R = ν0(α)ε,⊥

1 = ν2(σ)⊥L,R = ν2(σ)⊥L,r = ν2(σ)⊥l,r

1 = ν2(σ)R⊥,L = ν2(σ)R⊥,l = ν2(σ)r⊥,l = ν2(σ)⊥⊥,⊥ .

All remaining entries in ν are 0. The wta N also recognises zigzag. We propose
P = {l}2 ∪ {r}2 ∪ {L,R,⊥}2 as backward bisimulation. We note that ν0(α)ε,L

and ν0(α)ε,R and ν0(α)ε,⊥ are all equal and
∑

p1p2∈[⊥][⊥] ν2(σ)p1p2,p = 1 and

ν2(σ)p1p2,p = 0 for every p ∈ {L,R,⊥} and p1, p2 ∈ P such that (p1,⊥) /∈ P and
(p2,⊥) /∈ P. �

For the rest of this section, let R be a backward bisimulation on M . Next we
define how to collapse M with respect to R.

Definition 18 (cf. [9, Definition 3.3]). The backward aggregated wta (M/R)
is the wta ((Q/R) , Σ,A, F ′, µ′) such that (i) F ′(D) =

∑

q∈D F (q) for every
block D of (Q/R) and (ii) µ′

k(σ)D1···Dk,[q] =
∑

w∈D1···Dk
µk(σ)w,q for every sym-

bol σ in Σ(k), word D1 · · ·Dk of blocks in (Q/R), and state q ∈ Q.

Example 19. Recall the wta N and the backward bisimulation P from Ex-
ample 17. We obtain (N/P) = (P ′,∆, IN, G′, ν′) with P ′ = {[l], [r], [⊥]} and
G′([l]) = 1 and G′([r]) = G([⊥]) = 0 and the nonzero tree representation entries

1 = ν′
2(σ)[⊥][⊥],[r] = ν′

2(σ)[⊥][l],[r] = ν′
2(σ)[⊥][⊥],[l] = ν′

2(σ)[r][⊥],[l] = ν′
2(σ)[⊥][⊥],[⊥]

1 = ν′
0(α)ε,[l] = ν′

0(α)ε,[r] = ν′
0(α)ε,[⊥] . �

Next we prepare Theorem 21, which will show that M and (M/R) recognise
the same series. First we prove that every state q of M recognises the same series
as the state [q] of (M/R).

Lemma 20 (cf. [9, Theorem 4.2] and [18, Lemma 5.2]). Let (M/R) be
(Q′, Σ,A, F ′, µ′). Then hµ′(t)[q] = hµ(t)q for every state q ∈ Q and tree t ∈ TΣ.

The previous lemma establishes a nice property of bisimilar states. Namely,
hµ(t)p = hµ(t)q for every pair (p, q) ∈ R of bisimilar states and every tree t ∈ TΣ .

Theorem 21 (cf. [9, Theorem 4.2] & [18, Lemma 5.3]). ‖(M/R)‖ = ‖M‖.

Among all backward bisimulations on M , the coarsest one yields the smallest
aggregated wta, and this wta admits only the trivial backward bisimulation.

Theorem 22. There exists a coarsest backward bisimulation P on M , and the
wta (M/P) only admits the identity as backward bisimulation.

c©Springer Verlag, 2007.

input: A wta M = (Q, Σ,A, F, µ);

initially: P0 := Q × Q; L0 := (Q/P0)(≤r);

R0 := P0 \ splitb(L0); i := 0;

while Ri 6= Pi: choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1:= Pi \ cut (Bi);
Li+1:= (Q/Pi+1)(≤r);

Ri+1:=
`

Ri \ splitb(Li+1(Bi))
´

\ splitb(Li+1(Si \ Bi,¬Bi));
i := i + 1;

return: (M/Ri);

Algorithm 2. A backward bisimulation minimisation algorithm for wta.

Algorithm. We now show how Alg. 1 can be modified so as to minimise with
respect to backward bisimulation. For this we recall the wta M = (Q,Σ,A, F, µ)
with n = |Q| states. Intuitively, the sum

∑

w∈D1···Dk
µk(σ)w,q captures the extent

to which q is reachable from states in D1 · · ·Dk, on input σ, and is thus a
local observation of the properties of q (cf. Definition 16). To decide whether
states p and q are bisimilar, we compare

∑

w∈L µk(σ)w,p and
∑

w∈L µk(σ)w,q on
increasing languages L. If we find a pair (σ,L) on which the two sums disagree,
then (p, q) can safely be discarded from our maintained set of bisimilar states.

Definition 23. Let B,B′ ⊆ Q and let L ⊆ P(Q∗) be a set of languages.

– We write L(B) to denote {L ∩ Q∗BQ∗ | L ∈ L}.
– We write L(B,¬B′) when we mean {L ∩ (Q \ B′)∗ | L ∈ L(B)}.
– We write splitb(L) for the set of all (p, q) in Q × Q for which there exist

σ ∈ Σ(k) and a language L ∈ L∩P(Qk) such that the sums
∑

w∈L µk(σ)w,p

and
∑

w∈L µk(σ)w,q differ.

Algorithm 2, as listed above, is obtained from Alg. 1 as follows. The initiali-
sation of R0 is replaced with the assignment R0 = P0 \ splitb((Q/P0)(≤r)), and
the computation of Ri+1 with

Ri+1 =
(

Ri \ splitb((Q/Pi+1)(≤r) (Bi))
)

\ splitb((Q/Pi+1)(≤r) (Si \ Bi,¬Bi)) .

Example 24. Consider the execution of the backward bisimulation minimisation
algorithm on the wta N = (P,∆, IN, G, ν) of Example 17. Clearly, P0 is P ×P . In
the computation of P0 \splitb(L0), the state space can be divided into {L,R,⊥}
and {l, r}, as

∑

w∈PP νk(σ)w,p is 1 when p is in the former set, but 2, when in the
latter. No additional information can be derived by inspecting ν0(α)ε,p because
this value equals 1 for every p ∈ {l, r, L,R,⊥}, so R0 = {l, r}2 ∪ {L,R,⊥}2.

In Iteration 1, S0 is by necessity P , and B0 is {l, r}, so P1 = R0. The tree
representation entries for the nullary symbol α will have no further effect on R0.
On the other hand, we have that

∑

w∈[⊥][l] ν2(σ)w,p is nonzero only when p = l,

which splits the block {l, r}. Seeing that ν is such that the block {L,R,⊥} is

c©Springer Verlag, 2007.

only affected by itself, we know that R1 = {l}2∪{r}2∪{L,R,⊥}2, is the sought
bisimulation. This means that termination happens in Iteration 3, when P3 has
been refined to the level of R1. �

Theorem 25. Algorithm 2 returns the minimal wta (M/P) with respect to back-
ward bisimulation. Equivalently; P is the coarsest backward bisimulation on M .

We now compute the time complexity of Alg. 2, using the same assumptions
and notations as in Sect. 3. In addition, we denote by µb

L, where L ⊆ P(Q∗), the
part of the tree representation µ that contains entries of the form µk(σ)q1···qk,q,
where q1 · · · qk is in L. The overall complexity of the Alg. 2 can be written as for
Alg. 1, with Init

f , Split
f
i, and Aggregate

f , replaced by Init
b, Split

b
i , and

Aggregate
b, respectively. By Lemma 26 we thus obtain Theorem 27.

Lemma 26. Init
b is in O(rm + n), whereas Aggregate

b is in O(m + n) and
Split

b
i is in O

(

r |µb
Li(Si)

|
)

.

Theorem 27. Algorithm 2 is in O(rmn).

As in the forward case, we present an optimisation of Alg. 2 for cancellative
semirings that reduces the time complexity.

Lemma 28. When the underlying semiring is cancellative, we can compute the
relation Ri+1 as Ri \ splitb(Li+1(Bi)) without effect on the overall algorithm.

Theorem 29. The optimisation of Alg. 2 is in O
(

r2m log n
)

.

5 Implementation

In this section we present experimental results obtained by applying an imple-
mentation (written in Perl) of Alg. 1 and Alg. 2 to the problem of language
modelling in the natural language processing domain [19]. A language model is
a formalism for determining whether a given sentence is in a particular language.
Language models are particularly useful in applications of natural language and
speech processing such as translation, transliteration, speech recognition, char-
acter recognition, etc., where transformation system output must be verified to
be an appropriate sentence in the domain language. Typically they are formed
by collecting subsequences of sentences over a large corpus of text and assigning
probabilities to the subsequences based on their occurrence counts in the data.
To obtain the probability of a sentence one multiplies the probability of subse-
quences together. It is thus useful to have a data structure for efficiently looking
up many subsequences. As effective language models typically have many mil-
lions of unique subsequences, but there is considerable similarity between the
subsequences, a compressed dictionary of subsequences seems to be a natural
choice for such a data structure. A minimisation algorithm is particularly suited
for building a compressed dictionary from uncompressed sequence input.

Recent research in natural language processing has focused on using tree-
based models to capture syntactic dependencies in applications such as machine

c©Springer Verlag, 2007.

Table 1. Reduction of states and rules by the bisimulation minimisation algorithms.

trees original forward backward convergence

states rules states rules states rules states rules

25 162 162 141 161 136 136 115 135

45 295 295 248 290 209 209 161 203

85 526 526 436 516 365 365 271 351

165 1087 1087 899 1054 672 672 468 623

305 1996 1996 1630 1924 1143 1143 735 1029

translation [20, 21]. We thus require a language model of trees, and the subse-
quences we will represent are subtrees. We prepared a data set by collecting
3-subtrees, i.e. all subtrees of height 3, from sentences taken from the Penn
Treebank corpus of syntactically bracketed English news text [22], and collected
observation statistics on these subtrees, which we stored as probabilities. In our
experiments, we selected at random a subset of these subtrees and constructed
an initial wta over the semiring (IR+,+, ·, 0, 1) by representing each 3-subtree in
a single path, with an exit weight at the final state equal to the observed prob-
ability of the subtree. The sizes of the initial wta are noted in columns 2 and 3
of Table 1. We then performed a single iteration of the forward and backward
variants, the results of which are noted in columns 4–7 of Table 1. On average
the wta size, taken as m + n, is reduced by 10% of original by the forward al-
gorithm and 34% by the backward algorithm. Reduction as a percentage of size
by the backward algorithm grew with the size of the wta on this data set, e.g.,
the largest wta presented in Table 1 was reduced by 42.7%. In contrast, forward
minimisation tended to reduce the size of the input by 10% for all wta in our
test set. This performance is likely due to the nature of the experimental data
used and may differ highly on, e.g., wta with a more densely packed µ, wta
representing infinite languages, etc.

As noted in Sect. 1, further minimisation may be obtained by applying the
two algorithms in an alternating manner. We found that for the wta in this
experiment, two iterations beginning with backward or three iterations beginning
with forward resulted in the smallest obtainable wta, the sizes of which are
noted in the last two columns of Table 1. On average, the maximal minimisation
reduced the size of the input wta by 45% and, as with backward minimisation,
the reduction percentage grows with the size of the initial wta, to 55.8% for the
largest wta in the sample set.

Acknowledgements The authors gratefully acknowledge the support of Kevin
Knight. We appreciate the sample automata provided by Lisa Kaati and would
like to thank Frank Drewes for proof-reading the manuscript. Finally, we would
like to extend our thanks to the referees for their insightful comments.

c©Springer Verlag, 2007.

References

1. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In Kohavi, Z., ed.: Theory of Machines and Computations. Academic Press (1971)

2. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proc. 13th Annual Symp. Founda-
tions of Computer Science, IEEE Computer Society (1972) 125–129

3. Gramlich, G., Schnitger, G.: Minimizing nfas and regular expressions. In: Proc.
22nd Int. Symp. Theoretical Aspects of Computer Science. Volume 3404 of LNCS.,
Springer Verlag (2005) 399–411

4. Milner, R.: A Calculus of Communicating Systems. Springer Verlag (1982)
5. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical

Computer Science 18(2) (1982) 115–148
6. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó (1984)
7. Gécseg, F., Steinby, M.: Tree languages. In Rozenberg, G., Salomaa, A., eds.:

Handbook of Formal Languages. Volume 3. Springer Verlag (1997) 1–68
8. Eilenberg, S.: Automata, Languages, and Machines—Volume A. Volume 59 of Pure

and Applied Mathematics. Academic Press (1974)
9. Buchholz, P.: Bisimulation relations for weighted automata. unpublished (2007)

10. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimisation
of tree automata. Technical Report ISI-TR-633, U. So. California (2007)

11. Kozen, D.: On the Myhill-Nerode theorem for trees. Bulletin of the EATCS 47

(1992) 170–173
12. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Proc.

7th Int. Conf. Developments in Language Theory. Volume 2710 of LNCS., Springer
Verlag (2003) 146–158

13. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J.
Automata, Languages and Combinatorics (2007) to appear.

14. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation of weighted tree
automata. Technical Report ISI-TR-634, U. So. California (2007)

15. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6) (1987) 973–989

16. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata.
In: Proc. 11th Int. Conf. Implementation and Application of Automata. Volume
4094 of LNCS., Springer Verlag (2006) 173–185

17. Borchardt, B.: The Theory of Recognizable Tree Series. Akademische Abhand-
lungen zur Informatik. Verlag für Wissenschaft und Forschung (2005)

18. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata.
Technical Report UMINF 06.25, Ume̊a University (2006)

19. Jelinek, F.: Continuous speech recognition by statistical methods. Proc. IEEE
64(4) (1976) 532–557

20. Galley, M., Hopkins, M., Knight, K., Marcu, D.: What’s in a translation rule? In:
Proc. HLT-NAACL. (2004) 273–280

21. Yamada, K., Knight, K.: A syntax-based statistical translation model. In: Proc.
ACL, Morgan Kaufmann (2001) 523–530

22. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated
corpus of english: The Penn treebank. Comp. Linguistics 19(2) (1993) 313–330

c©Springer Verlag, 2007.

