

Tuning As Ranking

Mark Hopkins Jonathan May SDL Language Weaver

> EMNLP July 29, 2011

We replaced **MERT**'s **linear optimization** with a **linear binary classifier**, and fed it **pairs** of translations, effecting a **ranking**

What we found

Urdu-English PBMT tuning stability

MERT MIRA PRO MIRA PRO MERT MIRA PRO MIRA PRO MERT MIRA PRO MIRA PRO MERT MIRA PRO MIRA PRO

)uestions?

Scalable to many features

Very fast

(Image credit: Silverstein, 1981)

A good scoring function can tell us

We should avoid bad functions

How do we ensure "proper" scores?

literal meaning?

literal meaning? fluency?

he goes not

28

literal meaning? fluency? word count? count of "he"? count of "coffee"?

alliterative? 02 \leq count(''o'') \leq 3 ? 1how do you feel? 32.8

Features!

fl: 2 f2: 2

Features!

fl: f2:

Form a weighted sum

Translations are feature vectors

ranks features B .28 8 3 il ne va pas .12 6 We should choose a Bad match! W: -3 vector that matches an

extrinsic score

features В .28 8 il ne va pas .12 6 We should choose a Good match! W: vector that matches an extrinsic score

The tuning framework that everybody uses

MERT framework

The tuning framework that (~(most)* everybody uses

MERT framework

* Not David Chiang

The tuning framework that (~(~(~)* everybody uses

(Och, 2003)

* Not David Chiang

The tuning framework that (~(most)* everybody uses

The tuning framework that (almost)* everybody uses

The MERT algorithm works by varying one weight at a time to find a value for that weight that aligns the **best model score** with the **best extrinsic score**

model extrins feats .28 5 3 8 .44 6 -5 **S**I .12 .15 -3 0 4 5 .18 -5 **S2** -3 2 .32 total .62 W: extrinsic hold var

model extrins feats .28 2 3 8 .44 6 **S**I - 1 1 .12 .15 -3 3 .18 -5 -3 **S2** total .76 -2 W: extrinsic hold

This works well for small feature sets, but as the feature space grows, it is hard to find a good position

Synthetic Experiment

"Candidate pool" of randomly drawn "feature" vectors

"Candidate pool" of randomly drawn "feature" vectors How to determine "extrinsic score"?

"Candidate pool" of randomly drawn "feature" vectors

Secret "goal weights" used to calculate extrinsic score

Now use MERT to try and learn the goal weights back This is linear equation solving It's much easier than MT tuning

Now use MERT to try and learn the goal weights back This is linear equation solving It's much easier than MT tuning

validates what has long been accepted as truth

MERT only cares about the top-scoring translation

MERT only cares about the top-scoring translation

It doesn't care about matching the overall ranking

This could lead to poor generalization feats model extrins

We should focus on rank

Recognize that these are different solutions!

We should focus on rank

Recognize that these are different solutions! (To MERT they are the same)

translation a

translation b

For any two translations **a** and **b** of the same sentence

(Herbrich et al., '99)

This is a **binary** classification problem

This is a **binary classification** problem

label (+ if a is better, - if b is better)

training instance (difference vector)

Find the separating vector

÷

 Δf_2

+

+

+

 Δf_1

Wednesday, August 3, 2011

Avoid Intractability

- Sample from the pool to avoid blowup
- Focus on difference vectors with large differences
- Add evil twins to ensure balance

Avoid Intractability

- Sample from the pool to avoid blowup
- Focus on difference vectors with large differences
- Add evil twins to ensure balance

PRO scales

Synthetic weight learning of MERT and PRO

Unlike MERT, PRO is unfazed by a large number of features in the synthetic test

PRO scales

Synthetic weight learning of MERT and PRO

Adding noise to the synthetic test makes it more difficult but PRO still does quite well compared to MERT

MIRA also scales... but it's **hard** to implement

(Watanabe et al., '07)

- Like PRO, a discriminative learning algorithm
- Unlike PRO, requires online, simultaneous optimization and decoding
- MIRA tuning must be customized to compute environment (cluster, inter-process communication, reliability concerns)

(Chiang et al., '08, '09)

Unavoidable slide detailing the configuration and data of the experimental conditions...zzzz

Language	Data (words)			Features				
	Train	Tune	Test	PBMT		SBMT		
				base	ext	base	ext	
Urdu-English	2.2M (NIST 2009)	16K (NIST 2008)	18K (NIST 2008)	15	2250	19	277	
Arabic-English	175M (NIST 2008)	65K (NIST 03-06/GALE)	47K (NIST 2008)	15	6333	19	352	
Chinese-English	173M (GALE 2008)	42K (NIST 03-06)	37K (NIST 2008)	15	1828	19	517	

Unavoidable slide detailing the configuration and data of the experimental conditions...zzzz

Unavoidable slide detailing the configuration and data of the experimental conditions...zzzz

Language	Data (words)			Features			
	Train	Tune	Test	PB	MT	SB base	ext
Urdu-English		te-of-the-	art ^K 2008)	15	2250	19	277
Arabic-English	175M (NIST 2008)	decoders 65K (NIST 03-06/GALE)	47K (NIST 2008)	15	6333	19	352
Chinese-English	173M (GALE 2008)	42K (NIST 03-06)	37K (NIST 2008)	15	1828	19	517

Unavoidable slide detailing the								
configuration and data of the								
Experimental conditions								
	per decoder Features							
Language	Train	Tune	Test	RB base	ext	SB base	MT	
Urdu-English	2.2M (NIST 2009)	16K (NIST 2008)	18K (NIST 2008)	15	2250	19	277	
Arabic-English	175M (NIST 2008)	65K (NIST 03-06/GALE)	47K (NIST 2008)	15	6333	19	352	
Chinese-English	173M (GALE 2008)	42K (NIST 03-06)	37K (NIST 2008)	15	1828	19	517	

Unavoidable slide detailing the configuration and data of the experimental conditions...zzzz

Language	Data (words)			Features			
	Pan M	EDT MID		PB	MT	SBI	MT
		ERT, MIR	A, FRC	base	ext	base	ext
Urdu-English	2.2M (NIST 2009)	16K (NIST 2008)	18K (NIST 2008)		2250	(19)	277
Arabic-English	175M (NIST 2008)	65K (NIST 03-06/GALE)	47K (NIST 2008)	(15)	6333	(19)	352
Chinese-English	173M (GALE 2008)	42K (NIST 03-06)	37K (NIST 2008)	(15)	1828	(19)	517

Unavoidable slide detailing the configuration and data of the experimental conditions...zzzz

		Data (words)			Features			
Language		Ran MIRA, PRO			PBMT		SBMT	
			RT doesn'		base	ext	base	ext
Urdu	-English	2.2M (NIST 2009)	16K (NIST 2008)	18K (NIST 2008)	13	2250	19	277
Arabio	c-English	175M (NIST 2008)	65K (NIST 03-06/GALE)	47K (NIST 2008)	15	6333	19	352
Chines	se-English	173M (GALE 2008)	42K (NIST 03-06)	37K (NIST 2008)	15	1828	19	517

Unavoidable s	slide detailing the
configuration	detailing the Report 4-reference, detokenized, mixed-case
experimental	
CAPCIIIICIICAI	

Language	Data (words)			Features			
	Train Tune		Test	PBMT		SBMT	
		Test	base	ext	base	ext	
Urdu-English	2.2M (NIST 2009)	16K (NIST 2008)	18K (NIST 2008)	15	2250	19	277
Arabic-English	175M (NIST 2008)	65K (NIST 03-06/GALE)	47K (NIST 2008)	15	6333	19	352
Chinese-English	173M (GALE 2008)	42K (NIST 03-06)	37K (NIST 2008)	15	1828	19	517

PRO is fast

* Your implementation of MIRA may be faster

MERT is unstable

Urdu-English PBMT tuning stability

PRO is stable

Urdu-English PBMT tuning stability

MERT vs. MIRA vs. PRO

MERT vs. MIRA vs. PRO

MERT vs. MIRA vs. PRO

Related Work

SampleRank

(Culotta, '08, Wick et al., '09, Roth et al., '10)

Similar approach, with guided search through pool space (See Haddow et al. in WMT)

Classifier-based Weight Learning

(Tillmann & Zhang, '05, Och & Ney, '02 Ittycheriah & Roukos, '05, Xiong et al., '06)

Discriminative Re-ranking

(Shen et al., '04, Cowan et al., '06, Watanabe et al., '06) Various approaches using classifiers to learn MT feature weights -- these do not use the difference vector approach

Changing the n-best list after decoding using similar techniques to ours

lt's scalable

lt's scalable

lt's **stable**

lt's scalable

lt's **stable**

lt's fast

lt's scalable

lt's fast

At least **three** external implementations prior to this talk

lt's scalable

lt's **stable**

