
Tuning As Ranking

Mark Hopkins
Jonathan May

SDL Language Weaver

EMNLP
July 29, 2011

Wednesday, August 3, 2011



What we did

Any Questions?

We replaced MERT’s linear optimization with 
a linear binary classifier, and fed it pairs of 

translations,  effecting a ranking

What we found

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

C
o
si

n
e
 s

im
ila

ri
ty

 
o
f 
le

a
rn

e
d
 w

e
ig

h
ts

Number of features

Synthetic weight learning
of MERT and PRO

PRO
Noisy PRO

MERT
Noisy MERT

Scalable to
many features

 17

 18

 19

 20

 21

 0  5  10  15  20  25  30

4
-r

e
f 

B
L

E
U

Iteration

Urdu-English PBMT tuning stability

TUNE

TEST

MERT
PRO

Consistent
results

MERT MIRA PRO MIRA PRO

MERT MIRA PRO MIRA PRO

MERT MIRA PRO MIRA PRO

Parity with
leading techniques

PRO MERT MIRA

Very fast

Wednesday, August 3, 2011



Which is best?

il ne va pas

(Image credit: Silverstein, 1981)

he goes not

he doesn’t go

she not go
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Which is best?

il ne va pas

he goes not

he doesn’t go

she not go -11

0

2

A good scoring function can tell us
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il ne va pas

We should avoid bad functions

-11

0

2

he goes not

he doesn’t go

she not go

Which is best?
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Which is best?

il ne va pas

How do we ensure “proper” scores?

??

??

??

he goes not

he doesn’t go

she not go
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Properties of the translation

he goes not
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Properties of the translation

literal meaning?

he goes not

2
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Properties of the translation

literal meaning?
fluency?

he goes not

2

4
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Properties of the translation

literal meaning?
fluency?
word count?
count of “he”?

alliterative?
...
count of “coffee”?

2 ≤count(“o”)≤3 ?
how do you feel?

2

4

3

1

0

0

1

32.8he goes not
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Properties of the translation

he goes not

literal meaning?
fluency?
word count?
count of “he”?

alliterative?
...
count of “coffee”?

2 ≤count(“o”)≤3 ?
how do you feel?

3

1

0

0

1

{
Features! 2

4

32.8

Wednesday, August 3, 2011



Properties of the translation

f1:
f2:

Features!

he goes not

2

4
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Properties of the translation

Features!

he goes not

Form a weighted sum

2 4-2 x + 3 x = 8

Weights!

f1:
f2:
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Translations are feature vectors

2 4

il ne va pas

he goes not

he doesn’t go

she not go

3 8

6 1
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Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: - 2 3

=

=

=

8

18

-9
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Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: - 2

=

=

=

h = f w

model 
score features weights

3

8

18

-9

Wednesday, August 3, 2011



Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: 5 -3

=

=

=

-2

-8

27

h = f w

model 
score features weights
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Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: 5 -3Tuning is all about 
choosing this vector

=

=

=

-2

-8

27

features model 
score
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Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: 5 -3
We should choose a 

vector that matches an 
extrinsic score

.28

.44

.12

=

=

=

-2

-8

27

BLEU+1

(Lin & Och, ’04)

features model 
score

extrinsic 
score
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Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: 5 -3
We should choose a 

vector that matches an 
extrinsic score

.28

.44

.12
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=

=
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Bad match!

ranks

features
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Weight vector determines the 
score

2 4

il ne va pas
3 8

6 1

w: - 2 1
We should choose a 

vector that matches an 
extrinsic score

.28

.44

.12

=

=

=

0

2

-11

Good match!

A

B

CC

B

A

features
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The tuning framework that 
everybody uses

MERT framework

(Och, 2003)
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The tuning framework that 
everybody uses

MERT framework

(Och, 2003)

(almost)*

* Not David Chiang
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The tuning framework that 
everybody uses

Candidate 
Generation

Generate n-best 
per input sentence

MERT framework

(Och, 2003)

Add to
Candidate Pool

(almost)*

* Not David Chiang
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The tuning framework that 
everybody uses

Candidate 
Generation

Weight
Optimization

Add to
Candidate Pool

MERT framework

(Och, 2003)

(almost)*

* Not David Chiang

Generate n-best 
per input sentence
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The tuning framework that 
everybody uses(almost)*

* Not David Chiang

Candidate 
Generation

Weight
Optimization

w:         

Add to
Candidate Pool

Learned
weight vector

MERT framework

(Och, 2003)

Generate n-best 
per input sentence
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How MERT works

2 4

3 8

6 1

.44

.28

.12

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

-3 -3

1 5

-5 -3

.18

.15

.32

S1

S2

feats extrins 
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2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

w: 0 0 

0

0

0

0

0

0

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works

.44

.28

.12

.18

.15

.32

total
extrinsic

.43

feats extrins model
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2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

w: 0 0 

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works

.44

.28

.12

.18

.15

.32

(MERT can optimize the 
non-decomposable BLEU; 

swap these for n-gram 
component values and 

determine total with the 
BLEU equation)  

0

0

0

0

0

0

feats extrins model

total
extrinsic

.43
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2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

w: 0 0 

vary hold

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works

.44

.28

.12

.18

.15

.32

0

0

0

0

0

0

feats extrins model

total
extrinsic

.43
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2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

w: -1 0 

-2

-3

-6

3

-1

5

vary hold

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works

.44

.28

.12

.18

.15

.32

feats extrins model

total
extrinsic

.60
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2 4

3 8

6 1

-3 -3

1 5
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The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works
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.28

.12

.18
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varyhold

feats extrins model

total
extrinsic

.60
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2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

w: -1 1

2

5

-5

0

4

2

varyhold

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works

.44

.28

.12

.18

.15

.32

feats extrins model

total
extrinsic

.62
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2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

w: -2 1

0

2

-11

3

1

7

vary hold

The MERT algorithm 
works by varying one 

weight at a time to find 
a value for that weight 
that aligns the best 

model score 
with the best 

extrinsic score

How MERT works

.44

.28

.12

.18

.15

.32

feats extrins model

total
extrinsic

.76

Wednesday, August 3, 2011



2 4

3 8

6 1

This works well for small feature sets, but as the feature 
space grows, it is hard to find a good position

-3 -3
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w: -2 1

??

??

??

??

??

??

0

1

1

0

0

2

2

3

-5

7

17

6

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

3 16               

How MERT works

.44

.28

.12

.18

.15

.32

feats extrins model

Wednesday, August 3, 2011



Synthetic Experiment

random

random

random

“features”

“Candidate pool” of randomly drawn “feature” vectors
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Synthetic Experiment

?

How to determine “extrinsic score”?

random

random

random

“extrinsic
score”

“features”

“Candidate pool” of randomly drawn “feature” vectors
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Synthetic Experiment

“Candidate pool” of randomly drawn “feature” vectors

Secret “goal weights” used to calculate extrinsic score

random

random

random

“extrinsic
score”

“features”

goal weightsSECRET
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Synthetic Experiment

Now use MERT to try and learn the goal weights back

goal weights

random

random

random

This is linear equation solving

It’s much easier than MT tuning 

MERT algorithm

learned weights

“extrinsic
score”

“features”

SECRET
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Synthetic Experiment

Now use MERT to try and learn the goal weights back

goal weights

random

random

random

This is linear equation solving

It’s much easier than MT tuning 

MERT algorithm

learned weights≈?

“extrinsic
score”

“features”
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MERT doesn’t scale

The synthetic experiment in ideal conditions 
validates what has long been accepted as truth

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

C
o

si
n

e
 s

im
ila

ri
ty

 
o

f 
le

a
rn

e
d

 w
e

ig
h

ts

Number of features

Synthetic weight learning of MERT

MERT

Wednesday, August 3, 2011



MERT only cares about the 
top-scoring translation

2 4

3 8

6 1

-3 -3

1 5

-5 -3
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S2

0

2

-11

3

1

7

A

B

C

B

C

A

feats extrins model
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A

B

C

B

C

A

MERT only cares about the 
top-scoring translation

2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

??

A

??

??

??

A

MERT doesn’t care 
about these

feats extrins model
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It doesn’t care about matching 
the overall ranking

2 4

3 8

6 1

-3 -3

1 5

-5 -3

S1

S2

B

A

C

B

C

A

mismatch!

feats extrins model
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This could lead to poor 
generalization
2 4

3 8

6 1

S1

0

2

7 -4 SJ

12 -2 GB

-12 5 DZ

... ... ... ...

not good but 
liked by model

good but 
disliked

A

B

C

D

A

C

feats extrins model
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We should focus on rank

Recognize that these 
are different solutions!
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We should focus on rank

Recognize that these 
are different solutions!

    

    

    

    

    

    

    

    

    

    

(To MERT they are the 
same)
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E
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We can describe rank from a 
pairwise perspective

  fb  fa

translation a translation b

For any two translations a and b 
of the same sentence

ha hbga gb

(Herbrich et al., ’99)
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We can describe rank from a 
pairwise perspective

    

translation a translation b

>

fbfa ha hb

Model and extrinsic 
score order should agree

ga gb

gbga hbha >
extrinsic model

Wednesday, August 3, 2011



We can describe rank from a 
pairwise perspective

translation a translation b

gbga >

    fbfa ha hbga gb

> 0

hbha >

hbha -

extrinsic model
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We can describe rank from a 
pairwise perspective

translation a translation b

> 0

hbha >>

hbha

    fbfa ha hb

> 0w fa fbw

gbga

ga gb

-
-

extrinsic model
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We can describe rank from a 
pairwise perspective

translation a translation b

>

    fbfa ha hb

> 0w fa-fb

gbga

ga gb

> 0

hbha >

hbha

> 0w fa fbw

-
-

extrinsic model
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This is a binary
classification problem

> gbga > 0w fa-fb

extrinsic model
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This is a binary
classification problem

training instance
(difference vector)

label
(+ if a is better, 
- if b is better)

> gbga > 0w fa-fb

fa-fb

+

extrinsic model

Wednesday, August 3, 2011



-
-

-
-

-

-

-

-

-

-

-

Δf1

Δf2

+
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+

+

Find the separating vector
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Find the separating vector

w fa-fb = 0
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Find the separating vector

w fa-fb = 0

w fa-fb > 0

w fa-fb < 0

“I have a good tool for finding 
that vector!” (Daumé III, ’04)
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Find the separating vector

w fa-fb = 0

w fa-fb > 0

w fa-fb < 0

“I have a good tool for finding 
that vector!” (Daumé III, ’04)

Daumé III, ’04

MegaM
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Manning & Klein, ’03

Stanford
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fier
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WEKA
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Avoid Intractability

++

+

-
-

-

• Sample from the pool to 
avoid blowup

• Focus on difference vectors 
with large differences

• Add evil twins to ensure 
balance

fa-fb

+
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Avoid Intractability

++

+

-
-

-

• Sample from the pool to 
avoid blowup

• Focus on difference vectors 
with large differences

• Add evil twins to ensure 
balance

fb-fa

-
fa-fb

+

(Nimoy, ’68)
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MERT Tuning

Candidate 
Generation

MERT
Optimization

w:         

Add to
Candidate Pool

Learned
weight vector

Generate n-best 
per input sentence

MERT framework

(Och, 2003)
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Pairwise Ranking Optimization 
(PRO) Tuning

Candidate 
Generation

Pairwise Ranking
Optimization

w:         

Add to
Candidate Pool

Learned
weight vector

MERT framework

Sample pairs
MegaM

Generate n-best 
per input sentence
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PRO scales

Unlike MERT, PRO is unfazed by 
a large number of features in the synthetic test
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Adding noise to the synthetic test makes it more difficult
but PRO still does quite well compared to MERT

PRO scales
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MIRA also scales...
but it’s hard to implement

• Like PRO, a discriminative learning 
algorithm

• Unlike PRO, requires online, 
simultaneous optimization and 
decoding

• MIRA tuning must be customized 
to compute environment (cluster, 
inter-process communication, 
reliability concerns)

(Chiang et al., ‘08, ‘09)(Watanabe et al., ’07)
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517

Standard large-scale
language pairs
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517

State-of-the-art
decoders
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517

Two feature configurations
per decoder
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517

Ran MERT, MIRA, PRO
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517

Ran MIRA, PRO
(MERT doesn’t scale)
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Unavoidable slide detailing the 
configuration and data of the 

experimental conditions....zzzzz 

Language

Data (words)Data (words)Data (words) FeaturesFeaturesFeaturesFeaturesFeatures

Language
Train Tune Test

PBMTPBMTPBMT SBMTSBMTLanguage
Train Tune Test

base base ext base ext

Urdu-English
2.2M

(NIST 2009)
16K

(NIST 2008)
18K

(NIST 2008)
15 22502250 19 277

Arabic-English
175M

(NIST 2008)
65K

(NIST 03-06/GALE)
47K

(NIST 2008)
15 63336333 19 352

Chinese-English
173M

(GALE 2008)
42K

(NIST 03-06)
37K

(NIST 2008)
15 18281828 19 517

Report 4-reference, 
detokenized, mixed-case 

BLEU
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PRO is fast
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PRO MERT MIRA*
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Wall time CPU time

* Your implementation of MIRA may be faster
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MERT is unstable

Result from five identical runs
(Clark et al., 2011)
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MERT vs. MIRA vs. PRO

17

19

22

24

26

MERT MIRA PRO MIRA PRO

18.117.8
18.217.917.7

21.621.8

20.420.520.5

PBMT Urdu-English

17

19

22

24

26

MERT MIRA PRO MIRA PRO

22.822.8
22.222.3

21.4

24.2

25.2

23.423.623.4

SBMT Urdu-English

baseline features
extended features
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MERT vs. MIRA vs. PRO

39

41

44

46

49

MERT MIRA PRO MIRA PRO

41.941.7
41.141.141.2

48.5
47.5

46.94746.8

PBMT Arabic-English

39

41
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46

49

MERT MIRA PRO MIRA PRO

40.3
39.8

393939

45.945.8

44.544.644.7

SBMT Arabic-English

baseline features
extended features
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MERT vs. MIRA vs. PRO

22

23

24

25

26

MERT MIRA PRO MIRA PRO

22.722.622.522.5
22.2

24.924.8

23.8
24.1

23.8

PBMT Chinese-English

22

23

24

25

26

MERT MIRA PRO MIRA PRO

23.5
23.3

22.922.9
22.7

25.6
26

25.525.425.5

SBMT Chinese-English

baseline features
extended features

Wednesday, August 3, 2011



PRO is comparable to all

22

24

26

MERT MIRA PRO MIRA PRO

PBMT Chinese-English

17

22

26

MERT MIRA PRO MIRA PRO

PBMT Urdu-English

39

44

49

MERT MIRA PRO MIRA PRO

PBMT Arabic-English

17

22

26

MERT MIRA PRO MIRA PRO

SBMT Urdu-English

39

44

49

MERT MIRA PRO MIRA PRO

SBMT Arabic-English

22

24

26

MERT MIRA PRO MIRA PRO

SBMT Chinese-English

base
ext
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PBMT Chinese-English

PRO is comparable to all
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PBMT Urdu-English
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MERT MIRA PRO MIRA PRO

PBMT Arabic-English

17

22

26

MERT MIRA PRO MIRA PRO

SBMT Urdu-English

39

44

49

MERT MIRA PRO MIRA PRO

SBMT Arabic-English

22

24

26

MERT MIRA PRO MIRA PRO

SBMT Chinese-English

base
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Related Work
SampleRank

(Culotta, ’08, Wick et al., ’09, Roth et al., ’10)

Similar approach, with guided 
search through pool space

(See Haddow et al. in WMT)

Classifier-based Weight Learning
(Tillmann & Zhang, ’05, Och & Ney, ’02

Ittycheriah & Roukos, ’05, Xiong et al., ’06)

Various approaches using 
classifiers to learn MT feature 

weights -- these do not use the 
difference vector approach

Discriminative Re-ranking
(Shen et al., ’04, Cowan et al., ’06,

Watanabe et al., ’06)

Changing the n-best list after 
decoding using similar 

techniques to ours
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Why Use PRO?
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Why Use PRO?
It’s scalable
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Why Use PRO?
It’s scalable
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Why Use PRO?
It’s scalable

It’s fast

It’s stable

It’s easy

At least three external
implementations prior to 

this talk
PRO MERT MIRA
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Why Use PRO?
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this talk
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https://github.com/redpony/cdec/tree/master/pro-train

“Including 
mine!”

(Dyer, P.C.)
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this talk
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“Including 
mine!”

(Dyer, P.C.)

https://github.com/redpony/cdec/tree/master/pro-train

THANKS!
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