Tuning As Ranking

Mark Hopkins
Jonathan May
SDL Language Weaver

EMNLP
July 29, 20 I I

What we did

We replaced MERT's linear optimization with

 a linear binary classifier, and fed it pairs of translations, effecting a rankingWhat we found

Scalable to
many features

Consistent results

LLL LL
MERT MIRA PRO MIRA PRO

MERT MIRA PRO MIRA PRO
MERT MIRA PRO MIRA PRO
Parity with leading techniques

Very fast

Any Questions?

Which is best?

(Image credit: Silverstein, | 98 I)

Which is best?

A good scoring function can tell us

Which is best?

We should avoid bad functions

Which is best?

How do we ensure "proper" scores?

Properties of the translation

Properties of the translation

literal meaning?

Properties of the translation

literal meaning?
 fluency?

Properties of the translation

Properties of the translation

Features!

literal meaning?
fluency?
word count?
count of "he'?
count of "coffee"?
...
alliterative?
2 <count("o") ≤ 3 ? how do you feel? 32.8

Properties of the translation

Features!

Properties of the translation

Features!

fl:
f2:

Form a weighted sum

Translations are feature vectors

Weight vector determines the

 score

Weight vector determines the

 score| | features | model
 score | extrinsic |
| :---: | :---: | :---: | :---: |
| | 24 | $=-2$ | . 28 |
| | 38 | $=-8$ | 144 |
| | | $=27$ | . 12 |
| We | 5 | | |

BLEU+I extrinsic score
(Lin \& Och, '04)

Weight vector determines the

 scorefeatures
ranks

We should choose a vector that matches an extrinsic score

Weight vector determines the

 score

We should choose a vector that matches an extrinsic score

Good match!

The tuning framework that everybody uses

MERT framework

The tuning framework that (almost)* everybody uses

MERT framework

The tuning framework that

 (almost)* everybody uses

Candidate Pool

The tuning framework that

 (almost)* everybody uses

Candidate Generation

MERT framework

Weight
Optimization

The tuning framework that

 (almost)* everybody uses

How MERT works

How MERT works

This works well for small feature sets, but as the feature space grows, it is hard to find a good position

Synthetic Experiment

random

random

random

"features"
"Candidate pool" of randomly drawn "feature" vectors

Synthetic Experiment

?

random

random

random

"features"
"extrinsic score"
"Candidate pool" of randomly drawn "feature" vectors
How to determine "extrinsic score'?

Synthetic Experiment

goal weights

| random | $\square \bullet$ |
| :---: | :---: | :---: |
| random | $\square \bullet \square$ |
| random | $\bullet \bullet$ |
| "features" | "extrinsic
 score" |

"Candidate pool" of randomly drawn "feature" vectors
Secret "goal weights" used to calculate extrinsic score

Synthetic Experiment

Synthetic Experiment

This is linear equation solving
It's much easier than MT tuning

Synthetic weight learning of MERT

The synthetic experiment in ideal conditions
validates what has long been accepted as truth

\section*{MERT only cares about the top-scoring translation feats model extrins

 | 2 | 4 | 0 | \mathbf{B} |
| :---: | :---: | :---: | :---: |
| 3 | 8 | 2^{i} | \mathbf{A} |
| 6 | 1 | -11 | \mathbf{C} |
 $\begin{array}{llll}-3 & -3 & 3 & \mathbf{C}\end{array}$
 $\begin{array}{cccc}1 & 5 & 1 & B \\ -5 & -3 & 7^{i} & \mathbf{A}\end{array}$}

\section*{It doesn't care about matching the overall ranking

 | $\mathbf{2}$ | $\mathbf{4}$ | \mathbf{B} | \mathbf{B} |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | $\mathbf{8}$ | \mathbf{A} | \mathbf{A} |
| $\mathbf{6}$ | $\mathbf{1}$ | \mathbf{C} | \mathbf{C} |
 }

This could lead to poor generalization feats model extrins

> not good but liked by model
SI - 12
5
Z
D
good but disliked

We should focus on rank

- A A
 B
 B

 c
 C

 D D
 E E
 -

- A A
-

B
,

- ©
-

E

Recognize that these are different solutions!

We should focus on rank

I-
 A
 B
 B
 C C

 D
 E E

 - \boldsymbol{A}^{4} A

 - \boldsymbol{A}^{4} A

 B

 B

 c

 c

 D

 D

 E

 E}

Recognize that these are different solutions! (To MERT they are the same)

We can describe rank from a

 pairwise perspectivetranslation a

fal $\mathrm{ha}_{\mathrm{a}} \mathrm{g}_{\mathrm{a}}$

translation b

For any two translations \mathbf{a} and \mathbf{b} of the same sentence
(Herbrich et al., '99)

We can describe rank from a pairwise perspective

translation a
($\vec{f}_{a} \quad h_{a} \quad g_{a}$
translation b 이요
extrinsic
囷 > 풍
model $\mathbf{h}_{\mathbf{a}}>\mathbf{h}_{\mathbf{b}}$

Model and extrinsic score order should agree

We can describe rank from a pairwise perspective

translation a
$\overrightarrow{f_{a}} \mathrm{ha}_{\mathrm{a}} \mathrm{g}_{\mathrm{a}}$
translation b
이요
extrinsic

$$
g_{a}>g_{b}
$$

model

$$
h_{\mathrm{a}}>h_{\mathrm{b}}
$$

\longleftrightarrow

$$
\mathbf{h}_{\mathbf{a}}-\mathbf{h}_{\mathrm{b}}>0
$$

We can describe rank from a pairwise perspective

translation a
$\overrightarrow{f_{a}} h_{a} g_{a}$
translation b

extrinsic

$$
g_{a}>g_{b}
$$

model

$$
\boldsymbol{h}_{\mathrm{a}}>\boldsymbol{h}_{\mathrm{b}}
$$

We can describe rank from a pairwise perspective

translation a
$\overrightarrow{f_{a}} h_{a} g_{a}$
translation b

extrinsic

$$
g_{a}>g_{b}
$$

model
$h_{\mathrm{a}}>\mathrm{h}_{\mathrm{b}}$

$$
\longleftrightarrow
$$

\leftrightarrow

$$
\begin{aligned}
\mathbf{h}_{\mathrm{a}}-\mathbf{h}_{\mathrm{b}} & >0 \\
\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathbf{f}_{\mathrm{a}}}-\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{f}_{\mathrm{b}}} & >0 \\
\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{f}_{\mathrm{a}}-\mathrm{f}_{\mathrm{b}}}>0 & >0
\end{aligned}
$$

This is a binary classification problem

extrinsic

model
$g_{a}>\mathrm{g}_{\mathrm{b}} \longleftrightarrow \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{f}_{\mathrm{a}}-\mathrm{f}_{\mathrm{b}}}>0$

This is a binary classification problem

extrinsic
$g_{a}>g_{b}$
\longleftrightarrow
label (+ if a is better,

- if b is better)
$\vec{w} \cdot \overrightarrow{f_{a}-f_{b}}>0$
model
training instance
(difference vector)

Find the separating vector
$+$

| | |
| :--- | :--- | :--- |
| + | |
| + | + |
| | |

Δf_{2}

Daumé III, '04 Manning \& Klein, '03 Hall et alo, '09

Avoid Intractability

- Sample from the pool to avoid blowup
- Focus on difference vectors with large differences
- Add evil twins to ensure balance

Avoid Intractability

- Sample from the pool to avoid blowup
- Focus on difference vectors with large differences
- Add evil twins to ensure balance

MERTTuning

PRO scales

Synthetic weight learning of MERT and PRO

random	$\bullet \bullet$
random	$\bullet \bullet$
random	$\bullet \bullet$

Unlike MERT, PRO is unfazed by
a large number of features in the synthetic test

PRO scales

Synthetic weight learning of MERT and PRO

Adding noise to the synthetic test makes it more difficult but PRO still does quite well compared to MERT

MIRA also scales... but it's hard to implement

- Like PRO, a discriminative learning algorithm
- Unlike PRO, requires online, simultaneous optimization and decoding
- MIRA tuning must be customized to compute environment (cluster, inter-process communication, reliability concerns)
(Watanabe et al., '07)
(Chiang et al.,'08, '09)

Unavoidable slide detailing the configuration and data of the experimental conditions....zzzzz

Language	Data (words)			Features			
	Train	Tune	Test	PBMT		SBMT	
				base	ext	base	ext
Urdu-English	$\begin{gathered} 2.2 \mathrm{M} \\ (\text { NIST 2009) } \end{gathered}$	$\begin{gathered} 16 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	$\begin{gathered} 18 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	15	2250	19	277
Arabic-English	175M (NIST 2008)	$65 K$ (NIST 03-06/GALE)	47K (NIST 2008)	15	6333	19	352
Chinese-English	$\begin{gathered} \text { I73M } \\ \text { (GALE 2008) } \end{gathered}$	$\begin{gathered} 42 \mathrm{~K} \\ \text { (NIST 03-06) } \end{gathered}$	$\begin{gathered} 37 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	15	1828	19	517

Unavoidable slide detailing the configuration and data of the experimental conditions....zzzzz

Unavoidable slide detailing the configuration and data of the experimental conditions....zzzzz

Language	Data (words)			Features			
	Train	Tune	Test	PBMT		SBMT	
					2250	base	ext
Urdu-English	(NIS	ne	arter			19	277
Arabic-English	\| 7 /51M (NIST 2008)	$\begin{gathered} \text { 65K } \\ \text { (NIST 03-06/GALE) } \end{gathered}$	$\begin{gathered} 4 / K \\ (\text { NIST 2008) } \end{gathered}$	15	6333	19	352
Chinese-English	$\begin{gathered} \text { I73M } \\ \text { (GALE 2008) } \end{gathered}$	$\begin{gathered} 42 \mathrm{~K} \\ \text { (NIST 03-06) } \end{gathered}$	$\begin{gathered} 37 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	15	1828	19	517

Unavoidable slide detailing the configuration and data of the

 evnorimontal conditinnc...zzzzz Two feature configurations per decoder| per decoder | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Language | Train | | | | | | |
| Urdu-English | $\begin{gathered} 2.2 \mathrm{M} \\ \text { (NIST 2009) } \end{gathered}$ | $\begin{gathered} 16 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$ | $\begin{gathered} 18 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$ | 15 | 2250 | 19 | 277 |
| Arabic-English | $\begin{gathered} 175 \mathrm{M} \\ (\text { NIST 2008) } \end{gathered}$ | 65K (NIST 03-06/GALE) | $\begin{gathered} 47 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$ | 15 | 6333 | 19 | 352 |
| Chinese-English | I73M
 (GALE 2008) | $\begin{gathered} 42 \mathrm{~K} \\ \text { (NIST 03-06) } \end{gathered}$ | $\begin{gathered} 37 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$ | 15 | 1828 | 19 | 517 |

Unavoidable slide detailing the configuration and data of the experimental conditions....zzzzz

Language	Data (words)			Features			
	Ran MERT, MMRA, PRO			PBMT	SBMT		
					ext		
Urdu-English	$\begin{gathered} 2.2 \mathrm{M} \\ \text { (NIST 2009) } \end{gathered}$	$\begin{gathered} 16 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	$\begin{gathered} 18 \mathrm{~K} \\ \text { (NIST } 20 \mathrm{Cog} \end{gathered}$				277
Arabic-English	I75M (NIST 2008)	65K (NIST 03-06/GALE)	$\begin{gathered} 47 \mathrm{~K} \\ (\mathrm{NIST} 2008) \end{gathered}$			352	
Chinese-English	$\begin{gathered} \text { I73M } \\ \text { (GALE 2008) } \end{gathered}$	$\begin{gathered} 42 \mathrm{~K} \\ \text { (NIST 03-06) } \end{gathered}$	$\begin{gathered} 37 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$			517	

Unavoidable slide detailing the configuration and data of the experimental conditions....zzzzz

Language	Data (words)			Features			
	Ran MIRA, PRO (MERT doesn't scale)				SBMT		
				base	ext		
Urdu-English	$\begin{gathered} 2.2 \mathrm{M} \\ \text { (NIST 2009) } \end{gathered}$	$\begin{gathered} 16 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	$\begin{gathered} 18 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$				
Arabic-English	175M (NIST 2008)	$\begin{gathered} \text { 65K } \\ \text { (NIST 03-06/GALE) } \end{gathered}$	$\begin{gathered} 47 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$				
Chinese-English	$\begin{gathered} \text { I73M } \\ \text { (GALE 2008) } \end{gathered}$	$\begin{gathered} 42 \mathrm{~K} \\ \text { (NIST 03-06) } \end{gathered}$	$\begin{gathered} 37 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$				

Unavoidable clide detailino the Report 4-reference, configuratior detokenized, mixed-case experimental
 BleU

Language	Data (words)			Features			
	Train			PBMT		SBMT	
				base	ext	base	ext
Urdu-English	$\begin{gathered} 2.2 \mathrm{M} \\ \text { (NIST 2009) } \end{gathered}$	$\begin{gathered} 16 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	$\begin{gathered} 18 \mathrm{~K} \\ (\text { NIST 2008) } \end{gathered}$	15	2250	19	277
Arabic-English	175M (NIST 2008)	65K (NIST 03-06/GALE)	$\begin{gathered} 47 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	15	6333	19	352
Chinese-English	$\begin{gathered} 173 M \\ \text { (GALE 2008) } \end{gathered}$	$\begin{gathered} 42 \mathrm{~K} \\ \text { (NIST 03-06) } \end{gathered}$	$\begin{gathered} 37 \mathrm{~K} \\ \text { (NIST 2008) } \end{gathered}$	15	1828	19	517

PRO is $\boldsymbol{f a s t}$

* Your implementation of MIRA may be faster

TV MERT is unstable
 Urdu-English PBMT tuning stability

Result from five identical runs

PRO is stable

Urdu-English PBMT tuning stability

Result from five identical runs

MERT vs. MIRA vs. PRO

PBMT Urdu-English

MERT vs. MIRA vs. PRO

PBMT Arabic-English
SBMT Arabic-English

MERT vs. MIRA vs. PRO

PBMT Chinese-English 26
25
baseline features
\square extended features

PRO is comparable to all

$$
26
$$

26
22
17

49

26

24

22

MERT MIRA PRO MIRA PRO
SBMT Arabic-English

SBMT Chinese-English

MERT MIRA PRO MIRA PRO

Related Work

SampleRank

(Culotta, '08, Wick et al., '09, Roth et al., ' I 0)

Classifier-based Weight Learning
 (Tillmann \& Zhang, '05, Och \& Ney, '02 |ttycheriah \& Roukos, '05, Xiong et al., '06)

Discriminative Re-ranking

(Shen et al., '04, Cowan et al., '06, Watanabe et al., '06)

Similar approach, with guided search through pool space (See Haddow et al. in WMT)

Various approaches using classifiers to learn MT feature weights -- these do not use the difference vector approach

Changing the n-best list after decoding using similar techniques to ours

Why Use PRO?

Why Use PRO?

It's scalable

Why Use PRO?

It's scalable

It's stable

Why Use PRO?

|t's scalable

It's fast

Why Use PRO?

It's scalable

|t's fast

PRO MERT MIRA

It's stable

It's easy

At least three external implementations prior to this talk

Why Use PRO?

|t's scalable

|t's fast

It's stable

It's easy

https://github.com/redpony/cdec/tree/master/pro-train

