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Abstract

Solutions for many natural language processing problems such as speech recognition, transliteration, and
translation have been described as weighted finite-state transducer cascades. The transducer formalism
is very useful for researchers, not only for its ability to expose the deep similarities between seemingly
disparate models, but also because expressing models in this formalism allows for rapid implementation
of real, data-driven systems. Finite-state toolkits can interpret and process transducer chains using generic
algorithms and many real-world systems have been built using these toolkits. Current research in NLP
makes use of syntax-rich models that are poorly suited to extant transducer toolkits, which process linear
input and output. Tree transducers can handle these models, and a weighted tree transducer toolkit with
appropriate generic algorithms will lead to the sort of gains in syntax-based modeling that were achieved
with string transducer toolkits. This thesis presents Tiburon, a weighted tree transducer toolkit that is
highly suited for the processing of syntactic NLP models. Tiburon contains implementations of novel
determinization, minimization, and training algorithms that are extensions of classical algorithms suitable
for the processing of weighted tree transducers and automata. Tiburon also contains algorithms reflecting
previously known results for generation, composition, and projection. We show Tiburon’s effectiveness at
rapid reproduction of previously presented syntax-based machine translation and parsing models as well
as its utility in constructing and evaluating novel models.



Chapter 1

Introduction: Models and Transducers

I can’t work without a model.

Vincent Van Gogh

1.1 A cautionary tale

computer at the University of Pennsylvania and attempts were made to recreate the parser some

forty years hence on modern machines (Joshi and Hopely, 1996). Given that computer science was
in its infancy at the time of the parser’s creation and much had changed in the interim, it is not surprising
that the resurrectors relied on the hundreds of pages of flowcharts and program specifications describing
the system as guidance, rather than the original assembly code itself. Unfortunately, due to ambiguities in
the documentation, some guesses had to be made in reimplementation, and thus the reincarnation of the
parser is only an approximation of the original system at best. As the resurrectors were faithful to the design
of the original parser, however, they built the modern incarnation of the parser as a single piece of code
designed to do a single task. Of course, this time they wrote the program in C rather than assembly. If, forty
years from now, a new generation of computer science archaeologists wishes to re-recreate the parser, one
hopes the C language is still understandable, and that the source code survives. Without this knowledge
the team will have to make do with the documentation of the original system as well as the fourteen or so
pages of description of the current reimplementation that document the assumptions made in the new code
and hope that this serves to remove all ambiguity and that no undocumented features were added to the
modern source. I weep for the future.

ONE of the earliest examples of a syntactic parser was built in 1958 and 1959 to run on the Univac 1

1.2 Transducers to the rescue

As it happens, this parser, now called Uniparse, was designed as a cascade of finite-state transducers, abstract
machines that read an input tape and write an output tape based on a set of state transition rules. Transducers
have been widely studied and have numerous attractive properties; among them is the property of closure
under composition—the transformations accomplished by a sequence of two transducers can be captured by
a single transducer. These properties, along with effective algorithms that take advantage of them, such as
an algorithm to quickly construct the composition of two transducers, allow any program written in the
form of a transducer cascade, as Uniparse was designed, to be easily and effectively handled by a generic
program that processes and manipulates transducers.

Rather than writing Uniparse from the original design schematics in custom assembly or C, the resurrec-
tors could have encoded the schematics themselves, which are already written as transducers, into a uniform
format that is suitable for reading by a generic finite-state transducer toolkit and used transducer operations
such as composition and projection (the obtaining of either the input or output language of a transducer)



to perform the parsing operations, rather than writing new code. By expressing Uniparse as transducer
rules the resurrectors would have been able to combine the transducer design with its code implementation.
Any alterations to the original design would have been encoded in the set of transducer rules, preventing
any “hacks” from hiding in the code base. A file containing solely transducer rules requires no additional
documentation to explain any hidden implementation, as the entire implementation is represented in the
rules. Most importantly, aside from formatting issues, a file of transducer rules is immune from the havoc
time wreaks on compiled code. Future generations could use their transducer toolkits on these files with a
trivial number of changes.

Of course, someone has to build the transducer toolkit itself. And this naturally raises the question: Is
implementing a program for finite-state transducers rather than for a syntactic parser simply trading one
specific code base for another? Thankfully, transducer cascades are useful for more than light deterministic
parsing. In the fields of phonological and morphological analysis Kaplan and Kay (1994) realized the
analysis rules linguists developed could be encoded as finite-state transducer rules, and this led first to a
transducer-based morphological analysis system (Koskenniemi, 1983) and eventually to the development
of XFST (Karttunen, Gadl, and Kempe, 1997), an entire finite-state toolkit complete with the requisite
algorithms needed to manipulate transducers and actually get work done. The set of natural language
transformation tasks capturable by regular expressions such as date recognition, word segmentation, some
simple part-of-speech tagging, and spelling correction, and light parsing such as that done by Uniparse can
be expressed as cascades of finite-state transducers (Karttunen et al., 1997). The availability of this toolkit
allowed researchers to simply write their models down as transducer rules and allow the toolkit to do the
processing work.

1.3 A transducer model of translation

Imagine we want to build a small program that translates between Spanish and English. Here is a simple
model of how an English sentence becomes a Spanish sentence:

o An English sentence is imagined by someone fluent in English.

o The words of the sentence are rearranged—each word can either remain in its original position or
swap places with the subsequent word.

e Bach word is translated into a single Spanish word.

Such a model obviously does not capture all translations between Spanish and English, but it does handle
some of them, and thus provides a good motivating example. Having envisioned this model of machine
translation, an enterprising student could set about writing a program from scratch that implements the
model. However, rather than enduring lengthy coding and debugging sessions the student could instead
represent the model by the following cascade of finite-state transducers which may be composed into a
single transducer using a toolkit such as XFST:

o A finite-state automaton A, which recognizes the sentences of English. This is a special case of a finite-
state transducer—one where each rule has a single symbol rather than separate reading and writing
symbols. A simple automaton for English maintains a state associated with the last word it saw, and
only has transitions for valid subsequent words. Let us semantically associate the state g, with cases
where the last recognized word was x. Let gsrarr be the state representing the beginning of a sentence.
We write rules like:

the ball
— {START — {the - qgrcen — {ball
green horse
- -—
Gthe Qgrecn -4 green — horse
ball
= Qthe — ball = e

and so on. This automaton will allow phrases such as “the ball” and “the green horse” but not “green
ball the” or “horse green”.



e A reordering transducer B with rules of the following form for all words a and b:

a€
- 1T,
a:a
-r—=r
bba
—rg—7
Here, € on the right side means no symbol is written when the rule is invoked, though the symbol on
the left is consumed. The rules are instantiated for each possible pair of words, so given the English
vocabulary {the, ball, green} we would have:

the:e ball:e green:e
=T > Tthe =T > Tpall - r > Voreen
the:the ball:ball green:green
—-—r—r -r—r -r—r
ball:ball the ball:ball ball ball:ball green
= Tthe r = Tpall > T = Tgreen > T
green:green the green:green ball green:green green
— T ————> 7T — Tpall = Ygreen 4
the:the the the:the ball the:the green
= Tthe ——— > F = T — 7T = Ygreen ———— 7

e A one-state transducer C that translates between English and Spanish, e.g.:

ball:pelota horse:caballo

-s—s -s———s
the:el green:verde

- s —>5s - §5§—>
the:la

- - -

These three transducers can be composed together using classic algorithms to form a single translation
machine. A candidate Spanish phrase can then be encoded as a simple automaton D like so:

.qo

This automaton represents exactly the phrase “la pelota verde”. It can be composed to the right of the
translation chain. Then the domain projection of the composed transducer can be taken to obtain the
resulting translation, which in this case is “the green ball.” Notice that B allows many phrases to ultimately
translate to the Spanish phrase, but A restricts the domain to its language, which is valid English. By
separately encoding transducers that translate between English and Spanish appropriately and transducers
that recognize valid English we are able to impose both constraints.

There are many problems with this translation model. One of the most obvious is that we cannot handle
cases where the number of English and Spanish words is not the same, so the translation between “I do
not have” and “No tengo” is impossible. However, successive refinements and introductions of additional
transducers, some with e-rules, can help make the system better. Implementing the same refinements and
model changes in a custom code implementation can require many more tedious coding and debugging
cycles.

There is a more fundamental problem with this model that cannot easily be resolved by reconfiguring
the transducers. If there are multiple valid answers, how do we know which to choose? In this framework
a transformation is either correct or incorrect; there is no room for preference. We are faced with the choice
of either overproducing and not knowing which of several answers is correct, or underproducing and
excluding many valid transformations. Neither of these choices is acceptable.



1.4 Adding weights

While the development of a finite-state transducer toolkit was very helpful for attacking the problems of
its age, advances in computation allowed modeling theory to expand beyond a level conceivable to the
previous generation. Specifically, the availability of large corpora and the ability to process these corpora
in reasonable time coupled with a move away from prescriptivist approaches to linguistics motivated a
desire to represent uncertainty in processing and to empirically determine the likelihood of a processing
decision based on these large corpora. Transducers that make a simple yes-or-no decision were no longer
sufficient to represent models that included confidence scores. Researchers at AT&T designed FSM, a toolkit
that harnesses weighted finite-state transducers—a superset of the formalism supported by XFST (Mohri,
Pereira, and Riley, 2000). The association of weights with transducer rules affected the previous algorithms
for composition and introduced new challenges. Along with the physical toolkit code, new algorithms
were developed to cope with these challenges (Pereira and Riley, 1997; Mohri and Riley, 2002; Mohri, 2002).
Carmel (Graehl, 1997), a toolkit with similar properties as FSM, but with an algorithm for EM training of
weighted finite-state transducers (Eisner, 2002), was also useful in this regard. These toolkits and others like
them were quite helpful for the community, as the state of NLP models had greatly expanded to include
probabilistic models and without a decent weighted toolkit around, the only option to test these models was
nose-to-the-grindstone coding of individual systems. Subsequent to their invention and release a number
of published results featured the use of these toolkits and transducer formalisms in model design (Pereira,
Riley, and Sproat, 1994; Sproat et al., 1996; Knight and Al-Onaizan, 1998; Clark, 2002; Zajic, Dorr, and
Schwartz, 2002; Kumar and Byrne, 2003; Kolak, Byrne, and Resnik, 2003; Mathias and Byrne, 2006).

Returning to our translation example, we can see that some word sequences are more likely than others.
Additionally, some translational correspondences are more likely than others. And perhaps we want to
encourage the word reordering model to preserve English word order whenever possible. This information
can be encoded using weights on the various rules. Consider the language model: both “green ball” and
“green horse” are valid noun phrases, but the former is more likely than the latter. In the absence of
any other evidence, we would expect to see “ball” after “green” more often than we would see “horse”.
However, we would expect to see “green horse” more often than “green the”. By looking at a large amount
of real English text, we can collect statistics on how often various words follow “green”, and then calculate
a probability for each possible word. Such probabilities are added to the relevant rules as follows:

ball/0.8
® (oreen > (ball

horse/0.19
® (oreen > Ghorse

the/0.01
® g green — (the

The product of the probabilities of each rule used for a given sentence is the probability of the whole
sentence. Notice that we did not exclude the very unlikely sequence “green the”. However, we gave that
rule very low probability, so any sentence with that sequence would be quite unlikely. This represents an
increase in power over the unweighted model. Previously, we would not want to allow such a phrase, as
it almost certainly would be wrong. Now we can still acknowledge the extreme unlikeliness of the phrase,
but still allow for the rare situation where it is still the most likely choice.

We demonstrate our preferences in the other transducers in the chain through weights similarly. The
reordering transducer, for instance, should favor some reorderings and disfavor others. An English noun
phrase that contains an adjective (such as “green ball”) would typically be translated with the noun first in
Spanish. However, no reordering would be done for a noun phrase without adjectives (such as “the ball”).

the:e/0.1 green:green the/1
> the ® Gthe —
the:the/0.9 the:the the/1
> q L4 che
ball:ball the/1 green:e/0.7
® fihe — ( ® > (green
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Figure 1.1: The general noisy channel model. The model is proposed in the “story” direction but used in the
“decoding” direction, where a noisy input is transformed into the target domain and then validated against
the recognizer.

green:green/0.3 green:green green/1
S ® Ggreon ——————
green
ball:ball green/1 the:the green/1
® green q ® fereen —

The translation model we have built is getting more and more powerful. It has begun to take on the shape
of a very useful and often-applied general model of transformation—the noisy channel model (Shannon, 1948).
The key principle behind this model, depicted in Figure 1.1, is the separation of a sensible transformation
task into the cascade of a transformation task (without regard to sensibility of the output) followed by a
recognition task that only permits sensible output. By simply substituting the appropriate transducer or
transducers into our chain we can perform diverse tasks without altering the underlying machinery. If we
remove the permutation and translation transducers from our model, and instead add a word-to-phoneme
transducer followed by a phoneme-to-speech signal transducer, we can perform speech recognition on some
given speech signal input. If we replace the word language model with a part-of-speech language model
and the transducer cascade with a tag-to-word transducer we can perform part-of-speech tagging on some
word sequence input. In all of these cases the only work required to transform our translation machine
into a speech signal-recognition machine or a grammar markup machine is that of rule set construction,
which is in its essence pure model design. The underlying mechanics of operation remain constant. This
illustrates the wide power of weighted finite-state toolkits and explains why they have been so useful in
many research projects.

1.5 Going further

We must acknowledge that our model is still a simplification of “real” human translation, and, for the
foreseeable future, this will continue to be the case, as we are limited by practical elements, such as available
computational power and data. This has long been a concern of model builders, and thus in every generation
compromises are made. In the 1950s severe memory limitations precluded anything so general as a finite-
state-machine toolkit. In the 1980s few useful corpora existed and normally available computational power
was still too limited to support the millions of words necessary to adequately train a weighted transducer
sequence. In the present age we have more computational power, and large available corpora, but much
modeling of complex interaction such as translation is still done in a linear manner. We should consider
whether there are yet more limitations imposed by the technology of the previous era that can now be
relaxed.

One particular deficiency that arises, particularly in our translation model, is the requirement of linear
structure, that is, a sequential left-to-right processing of input. Human language translation often involves
massive movement depending on syntactic structure. In the previous examples we were translating be-
tween English and Spanish, two predominately Subject-Verb-Object (SVO) languages, but what if we were



translating between English and Japanese? The former is SVO but the latter is SOV. The movement of an
arbitrarily long object phrase after an arbitrarily long verb phrase (or vice-versa) is simply not feasible with
a formalism that at its fundamental core must process its input in linear order.

The disconnect between linear processes and the more hierarchical nature of natural language is an issue
that has long been raised by linguists (Chomsky, 1956). However, practical considerations and a realization
that a limited model with sufficient data was good enough for the time being led empirical research away
from syntactic models for nearly half a century.

A survey of recent work in NLP shows there is evidence that syntax-rich empirical models may now be
practical. Recent work with successful practical results in language modeling (Charniak, 2001), syntactic
parsing (Collins, 1997), summarization (Knight and Marcu, 2002), question answering (Echihabi and Marcu,
2003), and machine translation (Yamada and Knight, 2001; Galley et al., 2004; DeNeefe et al., 2007), to name a
few, clearly indicates there are gains to be made in syntactic NLP research. One common thread these papers
have, however, is that the results behind the presented models were obtained via custom construction of
one-off systems. Weighing the benefits of the syntax translation models of (Yamada and Knight, 2001) and
(Galley et al., 2004), for example, requires access to the projects’ respective code bases or re-engineering
efforts. Consequently, few if any such comparative studies exist, and the cycle of model improvement is
generally only possible for the original model engineers. Such a limitation is harmful to the community.

1.6 Better modeling through tree transducers

S S
/\ /\
I\{P VP N|P VP
/\ /\
NIl\TP V|B NP NIl\TP VIB NP
e — N —

John threw DT JI JI NIN John tir6 DIT JI N|N JI
I | | I

the large green ball la gran pelota verde

Figure 1.2: An (English, Spanish) tree pair whose transformation we can capture via tree transducers

The good news is many of these models can be expressed as a cascade of finite-state tree transducers. Tree
transducers were invented independently by Rounds (1970) and Thatcher (1973) to support Chomskyan
linguistic theories (Chomsky, 1957). However, it was the automata theory community that conducted
extensive study into their properties (Gécseg and Steinby, 1984; Comon et al., 2007). Recently, weighted tree
automata have been studied as a formal discipline as well (Engelfriet, Fil6p, and Vogler, 2001).

Let us consider how syntax can improve our previous toy translation model. Imagine we are now trying
to translate between English and Spanish sentences annotated with syntactic trees, such as in Figure 1.2. We
can accomplish this with top-down tree transducers, whose syntax we now informally describe. Whereas
for our previous finite-state transducers (now referred to as finite-state string transducers to differentiate) we

:0
had rules of the form a 2 ¥, here we may read in a portion of a tree B where f is a non-terminal
o 13,
node with 7 children and each ¢; is a placeholder or variable denoting an unspecified but present subtree.
Rather than simply writing an arbitrary length string 6 and proceeding at some state y, we may output a
tree S where 6 is a non-terminal node with m children and each 7; is a subtree. A leaf of any 7;

T1 Tm
may be a terminal node or it may be a pair ()}, {;) where y; is some state and 1); is a variable from the

read-in tree. This indicates that subsequent rules starting with y; and reading the tree represented by 1);
should write their output at this point in the output tree. Because the input and output sequences are more



complex, we move them off of the transition arrow and write as a. B 5 5 , showing the

(/E T S 1/ &1 Tm

output states in their appropriate places in the leaves of the tree headed by 6.

Since we are now considering syntax, we are no longer simply transforming between surface strings in
English and Spanish, but between syntactic trees. What new power can our transducer chain have once we
introduce this formalism?

e Rather than recognizing valid English phrases, our new automaton A’, the descendant of the string-
based A, must now recognize valid English trees. Here’s what some rules from A’ could look like:

— 0.2
q = qat — DT
1
- q-} S g
%p—;i;qg qW—sing - q]] ﬂ> ]|]
= Gup-sing = NP
green
N
0.2
o ==
= Gup-sing — NP 1 !
arge
d ij nn 0.1
. Qar  qjj 4 - i ]|]
= Qnp-sing — NP
' ’ /\ blue
. i O 0.7
s qat - qjj 4ji 49 = Gy —> NlN
o ball
the = ees

Already we can see some ways in which this syntactic automaton is more powerful than the string-
based automaton. Words are conditioned on their parts of speech, so a more appropriate distribution
for particular word classes can be defined. The top-down approach enables long-distance dependen-
cies and global requirements. For example, the rule g — g indicates the sentence will

PN

Anp-sing  Jop—sing
have both a noun phrase and verb phrase, and that both will be singular, even though it is not yet

known where the singular noun and verb will appear within those phrases.

e Although we can now get quite creative with our permutation model, we can demonstrate the in-
creased power of tree transducers by designing a B’ that has the same idea expressed in B: allow
re-ordering one level at a time:

-r
07
- -

S S
/" PN
X0 X1 T’np.X() va.xl
s - S
/" PN
Xo X1 va.xl T’np.X()

0.4
= Tup- NP - NP

7N\~

Xo X1 X2 X3 Tap.Xo  Tyun-X3  Tjj.X1  Tjj.X2



= Tnp- NP - NP
Xo X1 X2 X3 Tap.Xo  Tjj-X1  VanX3  Tjj.X2
0.1
= Tnp- NP - NP
Xo X1 X2 X3 Yar-Xo rjj.xl Yun X3 ij.Xz

The reordering at the top of the tree, swapping the positions of arbitrarily large noun phrases and
verb phrases, does sentence-wide permutation in a single step. Doing the equivalent with string-
based transducers would require a unique state for every possible noun phrase, making such an
operation generally impossible. The lower-level inversion could feasibly be accomplished with a
string transducer, but it would still require state that encodes the sequence of adjectives seen until the
noun at the end of the phrase is reached.

o We can use the power of syntax to our advantage in the design of the translation transducer, C’. Recall
that C has a set of word-to-word rules that do not take context into account. We can easily take context
into account in C’ by state:

- Sf@m'DlT - DIT
_ the la
015
1 = SfemNN — NN
= Sfem- NP — NP

| |
ball elota
VAN N p

Xo X1 Sfem-X0  Sfem-X1

State can also be used to encode number (differentiating “el” from “los”) and case (e.g. “yo” vs “me”).

1.7 Building a new toolkit

Weighted tree automata are a powerful formalism for natural language processing models, and as the
example above indicates, constructing useful models is not difficult. However, there is one main roadblock
preventing progress in weighted tree automata modeling of the scale seen for weighted string automata:
No appropriate toolkit exists. There are some existing tree automata toolkits (Borovansky et al., 1996; Genet
and Tong, 2001; Henriksen et al., 1995) but these are unweighted, a crucial omission in the age of data-driven
modeling. Additionally, they are chiefly aimed at the logic and automata theory community and are not
suited for the needs of the NLP community.

Although no toolkit currently exists, it is a simple matter to look at the history of toolkit development
and the relationship between the structures we wish to support and those that were handled in weaker
toolkits and infer what such development entails. We should of course follow the lead of other toolkits in
having simple design semantics and a relatively simple and small set of operators. We should be able to
read and write large text files that contain training data and transducers, expressed as rules. We will need
to support operations such as composition, projection, and training. Algorithms for these operations as
they relate to weighted tree transducers may not be known. We will thus have to discover or invent new
algorithms as necessary, and verify their correctness.

It is not enough to simply provide a toolkit for a different type of finite-state machine and assume
such a toolkit is usable. Our running example notwithstanding, we should justify the formalism we are
supporting by providing evidence of its applicability to a wide range of current work and demonstrate how
it may be used in future work. To that end we must investigate existing syntax-based models and describe
their formulation as tree transducer cascades. We must then show the toolkit is up to the challenge of
replicating the work previously done on custom systems. We can then describe new work, fully imagined



in the language of these tree transducers, and demonstrate the use of the toolkit to attack real problems and
achieve real empirical gains.
With that in mind, these are the contributions I will provide in my thesis:

e ] propose to write Tiburon, a tree transducer toolkit that provides fundamental operations such that
complicated tree-based models may easily be represented. The toolkit will provide implementations
of useful algorithms and a simple interface such that high-quality research projects and experiments
may be carried out with a minimum of custom programming work.

o I will provide several novel algorithms that accomplish for practical weighted tree automata theory
what the algorithms of (Mohri, Pereira, and Riley, 2000) accomplished for string automata. These
new algorithms for composition, determinization, minimization, and semantics generation support
the structures of Tiburon in a manner analogous to the relationship between the algorithms in (Mohri,
Pereira, and Riley, 2000) and the AT&T toolkit.

o I will demonstrate the power and limitation of tree automata by a detailed treatment of the translation
model of (Yamada and Knight, 2001) and the parsing model of (Collins, 1997) in the language of tree
automata. These treatments allow direct reimplementation of those complex models within Tiburon
and offer insight into the nature of syntactic models.

e Iwill describe new models for machine translation and parsing using combinations and manipulations
of tree automata and demonstrate empirical performance gains over state of the art performance on
large-scale tasks. The systems built to accomplish these tasks use Tiburon and have clean, uniform
descriptions that cannot hide implementation details because the underlying machinery is entirely
generic.



Chapter 2

A Brief Review of Finite-State Machines
and Algorithms

The machine unmakes the man.

Ralph Waldo Emerson

allowed a wide range of modeling to be performed with a core set of algorithms. In this chapter we

discuss those properties and describe the algorithms, explaining just how they are useful. As we expect
the reader to be somewhat familiar with finite-state string transducers and automata, and less so with their
tree counterparts, we present finite-state weighted tree transducers and automata as a dual generalization
of the more well-known formalisms and work our way up the complexity chain, explaining algorithms
once they become relevant. Eventually we reach weighted tree automata and extended weighted tree
transducers, the formalisms behind future chapters’ models and Tiburon’s main formalism.

A note about terminology. So that we can avoid the cumbersome “finite-state transducers and automata”
when talking about both together, in this work we refer to the broad class of finite-state systems as finite-
state machines. These can be roughly divided into transducers, machines that both read and write, and
automata, machines that either read or write!. For most of our purposes an acceptor, or reading automaton,
is indistinguishable from a generator, or writing automaton; where such a distinction is necessary we will
make it. In much of the literature string input and/or output is assumed, thus works dealing with, for
example, finite-state string transducers drop the distinction and refer instead to finite-state transducers. Since
we are concerned with relationships between finite-state tree and string machines, we will emphasize the
differences, referring to, for example tree transducers and string transducers, and generally omit the “finite-
state” designation, unless clarification is needed.

IN Chapter 1 we characterized finite-state transducers and automata as having useful properties that

2.1 String machines

Figures 2.1(a), 2.1(b), and 2.1(c) are visualizations of string transducers. String transducers have a set of states,
one of which is a start state and several of which are final states, and a set of rules which dictate a symbol read,
a symbol written, and the state transition that accompanies this processing. In the graphical forms depicted
in Figure 2.1 and subsequently throughout this work, states are indicated by circles, labeled for convenience
of reference. A bodyless arrow points to the start state, and a double circle indicates a final state. Rules
are indicated by directed arrows between states and are annotated with the symbols read and/or written.
The special symbol € appearing in either the input or output position of a rule indicates no word is read
and/or written during the state transition. Equivalent grammar representations of the transducers are in

IThere is confusion in the literature; some sources use automata in the sense we use machines (e.g., (Gécseg and Steinby, 1984)) and
some use it as we do (e.g., (Borchardt and Vogler, 2003)).

10



(a) String transducer A (b) String transducer B (c) Composition of A and B
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(d) Grammar for transducer A (e) Grammar for transducer B (f) Grammar for composition

Figure 2.1: Two string transducers and their composition

Figures 2.1(d), 2.1(e), and 2.1(f), respectively. String transducers are closed under composition (Schiitzenberger,
1961). This means a single string transducer can be built that does the work of any two sequential trans-
ducers. Figure 2.1(c) is formed from the composition of the transducers of Figures 2.1(a) and 2.1(b). The
corresponding algorithm that implements this construction naively runs in O(|M;||M,]|) time where |M,] is
the size (in the number of rules and states) of transducer My; careful construction can lessen that in practice,
particularly when more than two transducers are composed (Allauzen and Mohri, 2007). The composi-
tion algorithm is the “glue” that chains a transducer cascade together and is thus useful in automatically
combining two separately-behaving transducers.

Figure 2.2 shows three examples of string automata. Automata are similar to transducers except that they
are only used to recognize or generate sentences and thus each rule has a single symbol label. As string
automata are equivalent to string transducers where each rule has the same input and output label, the
composition algorithm for transducers can be used to find the intersection of two automata. Notice there
are multiple different paths in Figure 2.2(a) that read the string “a b”. An automaton with more than one
path for a given accepted string is known as a non-deterministic automaton. Deterministic automata are
easier to check for membership than non-deterministic automata because no backtracking is required; if the
path explored does not result in reaching a final state when reading some input, no path will. However,
non-deterministic automata are often easier to design and can be specified more compactly than their
deterministic counterparts. Thankfully, it is known that both types of string automata recognize the same
language family, and a determinization algorithm exists to transform a non-deterministic string automaton
into a deterministic automaton that recognizes the same language (Rabin and Scott, 1959). Figure 2.2(b)
shows the result of determinizing Figure 2.2(a). One potential consequence of determinization, however, is
a blow-up in the number of states in the resulting automaton. To mitigate this, as well as to shrink automata
constructed by other means, it is helpful to obtain determinized automata that recognize the same language
as some given automaton but have fewer rules and/or states. Thankfully there exists a unique minimal
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Figure 2.2: A string automaton in non-determinized, determinized, and minimized form

deterministic string automaton for any regular language, as well as an algorithm to convert a deterministic
string automaton into its equivalent minimal form (Aho, Hopcroft, and Ullman, 1974). Figure 2.2(c) shows
the result of minimizing Figure 2.2(b).

2.2 Weighted string machines

Practical results in finite-state machine work have benefited greatly from the idea of associating confidence
metrics with valid paths that is accomplished by the elevation to weighted string machines. The formalism
for weighted machines augments that for the unweighted case by associating weights to rules and defining
a method for combining weights when reading along a single path and when combining alternate paths.
As in the unweighted case, we would like to have the ability to compose weighted string transducers in
order to create transducer cascades. Like their unweighted counterparts weighted string transducers are
closed under composition, though care needs to be taken to ensure weights are preserved properly. (Pereira
and Riley, 1997) presents an algorithm that correctly composes weighted string transducers. Naturally, the
same algorithm can be used for the intersection of weighted string automata. Recently, more sophisticated
versions of this algorithm have been presented that are particularly suited for composition of more than
two transducers in a chain (Allauzen and Mohri, 2007).

al0.4
c/0.6

b/0.3 ®/_\A
a/0.3 c/0.2
\’V@_\J

Figure 2.3: A weighted string automaton

Figure 2.3 is an example of a weighted string automaton. In this example the multiplication operator is
used to combine weights along a path and the addition operator is used to combine alternate paths. Thus,
the weight for string “b ¢” is 0.18 and the combined weight for both paths reading string “a ¢” is 0.3.

Assigning weights to the paths invites us to inquire about the highest weighted path in a weighted
machine. We can further generalize to inquire about the k highest weighted paths. There are numerous
algorithms to obtain this; the fastest known (Eppstein, 1998) has worst-case runtime O(m + nlogn + k) for
an automaton with m rules and n states. Aside from the k highest weighted paths we may also want the k
highest weighted strings in an automaton or string pairs in a transducer, i.e., we want our k-best list to have
no repeated members. A determinization algorithm for weighted string automata that ensures weights in
the single path for a given string or string pair has the sum of the weights in the multiple paths of the
string or pair (Mohri, 1997; Allauzen and Mohri, 2004) prior to obtaining the k-best paths accomplishes

12



NP the

DIT N|N string
I
the tree
(a) Noun phrase as tree (b) String as special case of tree
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this goal. The previously cited advantages from determinization are also gained by this algorithm. As
determinization can increase the size of the input exponentially, minimization algorithms are also desired,
and these have been found for certain deterministic weighted string automata (Mohri, 1997; Eisner, 2003).
Minimization of transducers has in general not been studied to the best of our knowledge.

Even with the best efforts of minimization, it is still often desirable to reduce weighted string machines
in a lossy way, sacrificing the represented language in the name of practical considerations such as time and
space. This is accomplished by pruning some rules from the machine. As we are generally concerned with
the most likely strings or pairs in a language, we would like to prune off just those rules involved in the
least likely paths. Although not specifically described in the literature, An O(m + n) algorithm to do this has
been implemented in at least two toolkits (Graehl, 1997; Riley et al., 2007).

We have not yet described where these weights come from. Naturally, they can be set by hand by
experts who carefully craft the rules and have knowledge of the particular domain in which the machine
will operate. However, many model constructors are interested in building models that reflect the statistics
of data seen in practice. A training algorithm that, given training data, assigns probability to rules in such a
way that the probability of the training data is maximized is highly useful. The EM algorithm (Dempster,
Laird, and Rubin, 1977) is appropriate for this task. An instantiation of the algorithm for transducers, which
is also applicable to automata, is given in (Eisner, 2002) and the Carmel Finite-State toolkit (Graehl, 1997)
provides an implementation.

2.3 Tree machines and weighted tree machines

The literature further generalizes finite-state machines to include processing of trees. A tree is a symbol with
zero or more ordered children, each of which is also a tree. Thus, a string is a special case of a tree, as a string
may be defined as a symbol with at most one child. A tree with zero children is known as a leaf, particularly
if it is the child of some tree. Figure 2.4 has two example trees. Figure 2.4(a) is a typical example of the sort
of tree we will be concerned with in this work. In this case the symbol “NP” has rank 2, the symbols “DT”
and “NN” have rank 1, and the frontier symbols, those with rank 0, are “the” and “tree”. Figure 2.4(b) is an
example of the special case of strings represented as trees. Since all words in a string should have the same
rank in their tree notation we introduce the special “END” symbol with rank 0. All meaningful words in
this representation have rank 1.

Figure 2.5is an example of a tree automaton. Like string automata, tree automata contain states and rules
dictating state transitions and reading and writing of symbols. The principal difference is that the symbols
read and written are pieces of a tree and thus have multiple children. This is why Figures 2.5(a) and 2.5(b)
are hypergraphs. This automaton is presented in bottom-up form in Figure 2.5(a), and in top-down form in
Figure 2.5(b). Note that bottom-up tree automata have no explicit start state, as rules with no source state
are allowed at the beginning. Similarly, top-down tree automata have no explicit final state, and processing
is done when symbols with no children are read.

Tree automata are fairly difficult to read in graphical form, so the equivalent textual regular tree grammar
(RTG) formalism is often used instead. An equivalent RTG to the automaton of Figure 2.5(b) is presented
in Figure 2.5(c). RTG are also applicable to automata read bottom-up; in this case there is no explicit start
state and the denoted state is a terminating state.

Deterministic top-down tree automata, defined analogously to their string counterparts, are strictly
weaker than non-deterministic top-down tree automata. However, non-deterministic and deterministic
bottom-up tree automata are equivalent (and are equivalent to top-down non-deterministic tree automata
as well), so a straightforward generalization of the technique used for string automata exists for bottom-
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Figure 2.5: A tree automaton in three equivalent forms.

up determinization (Doner, 1970). Algorithms to minimize a determinized tree automaton are found in
(Brainerd, 1968) and (Arbib and Give’on, 1968).

As might be expected from the name, tree transducers transform trees in much the same way string
transducers transform strings. Most literature uses the term “tree transducer” to mean a machine that both
reads in and writes out trees. We use that term to describe any transducer that reads a tree and draw a
distinction between tree-to-tree and tree-to-string transducers, where the former is the classic type of tree
transducer and the latter reads a tree but writes a string. Figure 2.6(a) depicts a tree-to-tree transducer
in grammar form? and Figure 2.6(b) a similar tree-to-string transducer. A prime difference between tree
transducer rules and string transducer rules (other than the presence of trees) is the incorporation of variables
into the leaves of the rules’ input and output. This is done to specify the location in the output tree or string
at which continued writing takes place for each yet-unread input subtree. As an example, consider the rules
in Figure 2.6(a). If the input to this transducer is A we apply rule 1, then, in order, rules 6, 3, and 5,

D C C
and the transducer outputs M . Note that rule 1 specifies the location of processing of subsequent

PN
M N
AN
P P P
subtrees, such that the transformation of the right-most leaf of the input tree, C, is reflected on the left of the
output tree as Q, and so forth.
Tree transducers are considered copying if they process input more than once; rule 2 in Figure 2.6(a) is
an example of a copying rule. They are considered deleting if they do not process some of their input; rule 7
is an example of a deleting rule. Most tree transducers discussed in the literature constrain their rules such
that at most a single symbol and set of immediate child variables is read per rule. We will at times discuss
a class of extended tree transducers that does not have this constraint; rule 8 is an example of such a rule.
As with string transducers we would like to be able to form a chain of tree-to-tree transducers, possibly
with a tree-to-string transducer on the end, and compose them together to form a single tree transducer.
However, tree transducers with copying and deleting power are not closed under composition (Baker, 1979;
Gécseg and Steinby, 1984). If extended tree transducers are considered, closure under composition is not
guaranteed even if copying and deleting are forbidden (Maletti et al., 2008). For cases where closure under

2There is no suitable graphical visualization for tree transducers so we will only present them as grammars
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Figure 2.6: Two top-down tree transducers

composition is guaranteed a suitable algorithm to perform it is desired. Where composition is not possible
but the effect of composition is, by iteratively processing an input through a series of transducers, we also
would like to have suitable algorithms. We know of no such explicit algorithms available in the literature,
and present several as novel contributions, detailed in Chapter 3. These techniques are also useful in
obtaining the intersection of two tree automata.

Projection, obtaining the input or output automaton that represents the language a transducer can read
or write, is a trivial operation for string transducers, as this amounts to ignoring the undesired side of
transduction. While projection is often trivial for tree transducers, depending on their property and the
side of projection that is desired, this is not always true. Note that the range projection of a tree-to-string
transducer, if possible, will be a context-free grammar (CFG). In Chapter 5 we discuss plans to present
useful algorithms for projection, which are also useful in composition and application.

Tree machines can be extended with weights in the same way as string machines. With weighted tree
machines we can consider weight-related algorithms and extensions to algorithms for unweighted tree
automata.

An algorithm for obtaining the k most likely paths in a weighted tree automaton with m rules and # states
that runs in O(m + nklogk) time is presented in (Huang and Chiang, 2005). Determinization for weighted
tree automata, which allows the k-best algorithm to obtain a list of best trees instead of best paths, was
discussed in (Borchardt and Vogler, 2003), but the presented algorithm creates a state for each possible path.
In Chapter 3 we present a more efficient algorithm, discussed in (May and Knight, 2006a), that extends the
weighted string algorithm of (Mohri, 1997) to the case of weighted tree automata without loops. A recent
algorithm for minimizing deterministic weighted tree automata has been proposed in (Maletti, 2008). The
desire for lossy minimization, that is, pruning, is also present for tree machines, and we can apply the same
principles for string machines in an appropriate algorithm.
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Algorithm String Tree
unweighted weighted unweighted weighted

determinization Yes Yes PoC No
minimization Yes Yes Alg No
bisimulation minimization Alg Alg Alg No
K-best N/A Yes N/A Alg
pruning N/A Yes N/A Alg
intersection Yes Yes PoC PoC
EM training Yes Alg

Table 2.1: Available implementations of algorithms for various classes of automata. Yes = an algorithm is
known and an implementation is publicly available. Alg = an algorithm is known but no implementation
is known to be available. PoC = a proof of concept of the viability of an algorithm is known but there is no
explicit algorithm. No = no methods have been described

Algorithm String Tree

unweighted weighted unweighted weighted
composition Yes Yes PoC PoC
domain and range projection Yes Yes PoC PoC
application Yes Yes PoC PoC
EM training Yes Alg

Table 2.2: Available implementations of algorithms for various classes of transducers, using the key de-
scribed in Table 2.1

For the purposes of compact representation, it may be useful to obtain minimal non-deterministic weighted
tree automata. There is not guaranteed to be a single minimal non-deterministic weighted tree automaton
for some given weighted tree automaton and even if there is one, an algorithm for finding it is PSPACE-
complete (Meyer and Stockmeyer, 1972). In Chapter 3 we discuss a new algorithm that performs a heuristic
minimization approximation for non-deterministic weighted tree automata (Hogberg, Maletti, and May,
2007c).

Naturally, the difficulties associated with tree transducer composition are present as well with weighted
tree transducer composition. Additionally, we must take into consideration the ambiguities weights bring
to composition algorithms, that were handled in the string case by filters in (Pereira and Riley, 1997). To our
knowledge there has been no serious study of this issue.

Training of weighted tree machines, as in the string case, is a useful way of setting weights on tree
machines that reflect a training corpus of real-world data. An EM training procedure for weighted tree
transducers is presented in (Knight, Graehl, and May, 2008) and is trivially adaptable for automata.

The algorithms discussed in this chapter and their existence as published algorithms or available imple-
mented code prior to this work are outlined in Tables 2.1 and 2.2. In Chapter 3 we discuss our contribution
toward changing those items in the chart labeled “No” to “Yes” and in Chapter 4 we discuss the use of our
implementations of some of the elements labeled “Alg”. Chapter 5 details plans to turn all appropriate cells
in Tables 2.1 and 2.2 to “Yes”.
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Chapter 3

Algorithmic Contributions

It is safer to accept any chance that
offers itself, and extemporize a
procedure to fit it, than to geta
good plan matured, and wait for a
chance of using it.

Thomas Hardy

we describe an algorithm for (bottom-up) determinization of weighted tree automata and a heuristic min-
imization algorithm for weighted tree automata that is applicable to non-deterministic and deterministic
variants.

IN this chapter we describe our contributions to the body of algorithms outlined in Chapter 2. Specifically,

3.1 Practical weighted determinization of tree automata

In (May and Knight, 2006a) we presented an algorithm for determinizing a weighted tree automaton for
the purpose of generating k-best lists of trees in the automaton’s language, rather than k-best lists of paths,
where the same tree could be recognized in multiple paths. There is a natural empirical motivation for
such an algorithm in natural language. Ranked lists of output trees are useful for re-ranking and tuning
algorithms that can improve systems that parse, recognize speech, and automatically translate, to name a
few. However the systems suffer if the lists are highly repetitive, and the nature of system construction,
where multiple partial results are combined heuristically, ensures that they are.

As proposed in Chapter 2, we also value obtaining deterministic weighted tree automata so that checking
a tree’s membership does not require backtracking. Both of these problems are solved by applying a
determinization algorithm to an input weighted tree automaton.

3.1.1 Mobhri algorithm

The motivation for our algorithm is taken directly from (Mohri, 1997), which presented an algorithm
for determinization of weighted string automata. The algorithm combines subset construction with a
bookkeeping system that keeps track of leftover weight produced as a result of removing path ambiguity.
The algorithm is described in detail in (Mohri, 1997) but a motivating example will suffice to explain it here.

The string automaton in Figure 3.1(a) nondeterministically recognizes the strings “a b” and “b b” in a
variety of ways, with a variety of weights (for this example we assume the weight of a path is determined
by multiplying the weights of the rules along the paths and the weight of a string is determined by adding
the weights of all paths that recognize the same string). We use the determinization algorithm of (Mohri,
1997) to obtain an automaton that contains one path for each recognized string, with weight equal to the
sum of all paths in the input automaton. The method taken is a subset construction that keeps track of the
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Figure 3.1: Determinization of FSA (modification of figure from (Mohri, 1997))

method BLEU method Recall | Precision | F-measure
undeterminized 21.87 undeterminized 80.23 80.18 80.20
top-500 “crunching” | 23.33 top-500 “crunching” | 80.48 80.29 80.39
determinized 24.17 determinized 81.09 79.72 80.40
(a) BLEU results from string-to-tree ma- (b) Recall, precision, and F-measure results on DOP-style parsing of section
chine translation of 116 short Chinese sen- 23 of the Penn Treebank.

tences with no language model.

Table 3.1: Performance improvements using determinization of weighted tree automata. In each experiment
results are shown for the best derivation (undeterminized), estimate of best tree (top-500), and true best tree
(determinized)

weights of individual rules. As an example, consider the start state, A, which has 2 outgoing rules for the
label “a”. Our new automaton will have one rule labeled “a” coming from the start state, with weight equal
to the sum of the non-deterministic “a”-labeled rules, i.e., 4. What state should this rule go to? A classic
subset construction dictates it goes to a state representing both states B and C of the original automaton.
But we wish to be able to recover the individual rule weights, so we associate numbers, called “residuals”
in (Mohri, 1997), that allow this recovery. We associate 1/4 with B and 3/4 with C. By multiplying the
appropriate residual with the incoming rule we can thus recover the original weights. This also indicates,
in some sense, that 1/4 the total weight reached at this state is due to state B and 3/4 due to state C. The
analogous operation for rule “b” is also performed, and the partially built deterministic automaton is shown
in Figure 3.1(b).

To determine the outgoing rules of a state that represents a subset of states, we consider all the outgoing
rules coming from the original states represented and the residual from the original state. For state “B, 1/4
C, 3/4”, rules labeled “b” come from original state B, with a sum of 4, scaled by multiplying in the residual
for B to 1. Rules coming from C have a sum of 8, scaled by multiplying in the residual for C to 6. The
total weight, then, for the rule from this state labeled “b” is 7. All rules labeled “b” lead to state D, so the
destination state is simple to determine. The analogous operations are done from the state “B, 1/5 C, 4/5”
and the result determinized automaton is showed in Figure 3.1(c). The reader can verify the score for each
string in the deterministic automaton is equal to the sum of the weights of all paths over each string in the
original of Figure 3.1(a).

3.1.2 Our Algorithm

As described in (May and Knight, 2006a) we elevate the algorithm of (Mohri, 1997) to the bottom-up
tree automata case. The essential differences from the previous algorithm are that a vector of source
states replaces a single source state, and the residuals of all the states in a source vector are multiplied in
when calculating weights and subsequent states. This algorithm proved useful on empirical experiments.
Determinization of forests of output trees generated by a syntax-based machine translation system (Galley et
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al., 2004) changed the tree regarded as “best” 77.6% of the time and raised BLEU scores considerably. When
applied to a Data-Oriented Parsing-like model (Bod, 2003) we also showed empirical gains by determinizing
parse forests and returning the best tree in the forest, rather than the best path in a non-deterministic forest.
Table 3.1 compares performance in these tasks when the output forests are undeterminized, when a top tree
is estimated by summing duplicates over the top 500 paths in the forest, and by using the true top tree via
weighted determinization.

3.2 Bisimulation minimization of weighted tree automata

In (Hogberg, Maletti, and May, 2007c) we presented the results of a collaborative effort on a weighted
minimization algorithm for tree automata. In general a non-deterministic tree automaton may not have
a single form with a minimal number of states, and in the case that it does finding such an automaton
is PSPACE-complete (Meyer and Stockmeyer, 1972). However by using the principles of bisimulation,
essentially a local heuristic that determines whether or not a subset of states can be merged or must remain
separate, we produced a polynomial-time algorithm that empirically showed good performance when run
on an automatically-generated dictionary of parsed English trees.

o ° a/0.3 o o a/0.3
@ @ @ @
@ o o ©

(a) Forward bisimularity (b) Backward bisimularity

Figure 3.2: Examples of bisimularity conditions for states g and s

3.2.1 Bisimulation

Two systems are bisimular if their behavior given an input is indistinguishable to outside observers. This
concept is applied to minimization of tree automata by considering, pairwise, the states of an automaton
and merging them if they are bisimular according to a local test. (Hogberg, Maletti, and May, 2007a) and
(Hogberg, Maletti, and May, 2007c) present two such local tests for bisimularity as well as accompanying
algorithms. The first, forward bisimulation, considers states to be bisimular if they only contain rules that
ensure their futures are the same. Alternatively, backward bisimulation considers states bisimular if their pasts
are the same. Figure 3.2 contains examples of bisimularity conditions for states 4 and s. Notice that this
algorithm is applied to bottom-up tree automata. Thus, the notion of equivalent futures is, roughly, identical
completion on top of several (possibly different) already-recognized subtrees. The notion of equivalent pasts
is an identically completed sequence of already recognized-subtrees. Future bisimularity is identified by a
local test as follows:

A context ¢ is a sequence of states where one state has been replaced by the symbol O. It is used to
describe the states in the source of a rule other than the state in question. For example, in Figure 3.2(a) the
rules depicted both have context p O r. c[[x]] denotes a context ¢ with the O “filled” by state x. If cispOr
the rules of Figure 3.2(a) have source sequences c[[g]] and c[[s]], respectively. Two states p and g are locally
future-bisimular with respect to some set of destination states B if ).z wo(c[[p]], 7) = X, wo(cllg]], r) for all

recognizable symbols ¢ and contexts ¢, where w;({x1...x,}, y) is the weight of a rule y N o

TN

X1 o4oX
The local test for backward bisimularity is analogous to that for forward bisimularity,lthough r?aturally
inverted. We extend the definition of w such that w,({X;...X,}, y) where X; is some subset of states is the
sum of all w,({x1...x4}, y) where x; € X;Vi € [1,n]. Let R be a partition of the state set, represented as a set of
sets of states, and let B be an identified member of R. R¥(B) is a subset of RF where each member contains at
least one instance of B. Then, two states p and g are locally past-bisimular with respect to some partitioning
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Figure 3.4: Demonstration of the refinement of R with the forward bisimulation algorithm. States p and g,
while future-bisimular with respect to the entire state set, are not future-bisimular with respect to block B
and are thus split.

R and some identified member B if }’ ;_ REGB) wg(}_(), p)=Yxe REGB) wg(}_(), q) for all recognizable symbols ¢ with
rank k. These two local bisimularity tests are used in the algorithms for minimization.

3.2.2 Algorithms

The algorithms operate following the “process the smaller half” approach used by Hopcroft in the mini-
mization of deterministic string automata (Hopcroft, 1971). We initially are optimistic and assume that all
states may be considered equivalent and merged, then attempt to confirm our assumption by applying local
tests to blocks of states, splitting the blocks apart if these tests fail. Once the algorithm terminates a new
automaton consisting of one state for each block is returned.

Throughout the algorithm we maintain two partitions of states into equivalence classes. P, a “coarse”
partition, and R, a refinement of P. Initially, P consists of a single block with all states and R has all states
that are not future-bisimular with respect to the entire state set. In each iteration P and R are refined to P’
and R’, respectively, until they are the same, at which time the algorithm terminates. P’ is formed from P
by choosing a block S from P that is represented by at least two blocks in R, choosing B, one of those blocks
in R, and splitting B from S in the new P. This is illustrated in Figure 3.3. A new R is formed by splitting
any states in the same block that are not future-bisimular with respect to B. This is illustrated in Figure 3.4.

The backward algorithm is straightforward given the forward algorithm. The initial P is the same, and
the initial R is split by states that are not past-bisimular with respect to the entire state set. The splitting of
P in each iteration is the same as in the forward algorithm. The splitting of R is also the same, except that
blocks of R are split with regard to states that are not past-bisimular with respect to P’.

3.2.3 Results

In (Hogberg, Maletti, and May, 2007a; Hogberg, Maletti, and May, 2007c) we applied forward and backward
bisimulation to the problem of compactly representing partial syntax trees, which is useful for tree language
modeling. We prepared a data set by collecting 3-subtrees, i.e., all subtrees of height 3, from sentences taken
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TREES ORIGINAL FORWARD BACKWARD CONVERGENCE
states | rules || states | rules | states | rules || states | rules
5 23 23 18 22 21 21 16 20
105 707 707 598 694 475 475 361 457
205 1366 | 1366 || 1130 | 1324 | 840 840 575 769
305 1996 | 1996 || 1630 | 1924 | 1143 | 1143 735 1029

Table 3.2: Reduction of states and rules by using the bisimulation minimization algorithms

from the Penn Treebank. An initial weighted tree automaton was constructed by representing each 3-subtree
in a single path. We then applied both the forward and backward minimization algorithms to our initial
automaton. Automata can be minimized by iteratively running the forward and backward algorithms in
alternating succession until no changes are observed. However, although the choice of initial minimization
can affect the end automaton, we found the choice of initial minimization to not have a great impact on the
final automata in our experiments. In the 31 experimental setups, a portion of which are shown in Table 3.2,
only 4 yielded a different automaton depending on the initial minimization, and these differences were
never more than 2 rules or states off. We thus indicate in Table 3.2, for each experiment, the number of states
and rules initially, after one iteration of forward minimization, after one iteration of backward minimization,
and after convergence, which was generally achieved after the sequence (backward, forward), equivalent
to the sequence (forward, backward, forward). The differences between the two sequences, if any, were
inconsequential.
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Chapter 4

Machine Translation Model
Contributions

Translation is the other side of a
tapestry

Cervantes (attributed)

in terms of tree automata and tree transducers and use off-the-shelf generic algorithms to perform

IN this chapter we describe two instances of syntactic machine translation models that are expressed
experiments that involve these models.

4.1 A tree-to-string transducer model for Japanese-to-English transla-
tion

Yamada and Knight describe a model of syntactic word-to-word translation from English trees to Japanese
strings in (2001). They detail a method of using EM to learn word-to-word alignment from this model given
a parallel corpus of English tree/Japanese string data, an example of which is in Figure 4.1. The translation
model is depicted in Figure 4.2. According to the model described in (Yamada and Knight, 2001), English
trees are transformed into Japanese strings via the following generative process that begins at the root of
the English tree:

1. The node’s children are re-ordered, that is, they are permuted probabilistically. For example, if there
are three children, then there are six possible permutations whose probabilities add up to 1.

2. A decision is made about inserting a Japanese function word. This is a three-way decision at each
node—insert to the left, insert to the right, or do not insert—and it depends on the labels of the node
and its parent.

3. If the node’s children are not leaves, recursively process them from step 1. Otherwise, English leaf
words are translated probabilistically into Japanese, independent of context.

This model was encoded as a custom piece of software in (Yamada and Knight, 2001) and an EM
algorithm specific to the task was used to learn weights for the model parameters, a sample of which are
presented in Figure 4.3, given a training corpus. Naturally, the code written for this model was highly
customized and thus inappropriate for any other EM learning tasks.

An approximate form of the (Yamada and Knight, 2001) story cast as a tree-to-string transducer was pre-
sented in (Graehl and Knight, 2004) alongside a generic EM algorithm for tree-transducers. A transduction
begins at state . From there a decision is made to insert a word, represented by state 7, to either the left or
the right of the current node, or to not insert a word. This is expressed as follows:
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ENGLISH: (VB (NN hypocrisy)
(VB is)
(JJ3 (JJ abhorrent)
(TO (TO to) (PRP them))))

JAPANESE: kare ha gizen ga daikirai da

ENGLISH: (VB (PRP he)
(VB has)
(NN (JJ unusual) (NN ability))

(IN (IN in) (NN english)))

JAPANESE: kare ha eigo ni zubanuke-ta sainou wo mot-te iru
ENGLISH: (VB (PRP he)
(VB was)

(JJ3 (JJ ablaze)
(IN (IN with) (NN anger))))

JAPANESE: kare ha mak-ka ni nat-te okot-te i-ta

ENGLISH: (VB (PRP i)
(VB abominate)
(NN snakes))

JAPANESE: hebi ga daikirai da

Figure 4.1: A portion of a bilingual tree/string training corpus.

® .X0 = i.X0 IXp
® g.Xg— .Xg i.Xg
® (.X0 = 1.Xp
From state i a Japanese word is generated regardless of the input, which can be a tree of arbitrary size:
e ixg— “de”
e ixg— “kuruma”

From the reordering state r every permutation of every parent/child sequence is represented and the story
continues from the beginning in state g:

e 7. NN — 4.X0 4.X1
/\
X():CD .X'1ZNN
e 7. NN — 4.X1 4.X0
>
XQICD X1 ‘NN

At the English tree’s pre-terminal we instead transition to state f to avoid any more insertion or reordering
and prepare for translation. From state t we translate into some Japanese word or, alternately, no word:

e 7. NN — iXo
|

Xo:”car”

e t.”car” — “kuruma”
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VB

PRP VB1 B2
M /\
He  adores

vB TO

listening /\
TO

to mus

VB

PRP B2 VB1
A /\ \
He adores
TO V‘B
listening vB

I8

Reorder

»

NN NN TO

music to

sic VB2 VB1

1. Channel Input

He ha adores  dest

2. Reordered TO v 9

listening Mo
NN TO
[

music to

Reading off Leaves
3. Inserted

VB1

kare ha ongaku wo kiku no ga daisuki desu ‘ «

"4

Translate

S
kare ha a daisuki desu

5. Channel Output

o t car” — €

T0 vB

NN TO

ongaku ~ wo

4. Translated

Figure 4.2: The translation model of Yamada & Knight, 2001.

Note the differences from the original model. Here we reorder conditioned on the parent; previously

reordering was only d

one conditioned on the child sequence. Here, we decide whether to insert without

context; previously insertion was conditioned on the previous and current symbols. Using these approxi-
mations results are rather dissimilar from the original model; the alignments learned by the approximation

model match those lea

rned by the original model in 53% of sentences. However, it is a fairly simple matter

to correct these approximations, and even add more refinements to the model. In (Knight, Graehl, and May,
2008) we introduce a tree-to-string transducer model that exactly matches the model of (Yamada and Knight,

2001) and additionally

includes an additional constraint present in the original C code but not described in

the paper. To condition insertion on parent symbols we expand state g such that there is a separate state for

each symbol. This affects both the insertion rules and the reordering rules:

® grop.x0:VB — i.xg 1.x0

I]TOP.XQ2VB — 1.X0 i.xo

I]TOP.XQ2VB — 1.X0

qve-xo:NN — i.xq 7.xg

I]VB.XQZNN—> r.Xo i.XQ

qve-xo:NN — r.xg

° 7. NN — (NN-X0 NN-X1

XQICD

® 7.

X():CD

NN

X1 ‘NN

.X'1ZNN

— (NN-X1 NN-X0

The reordering rules are still overspecified relative to the original model, which would not distinguish

between the probability of reordering the children of i

from pzyN - Thus far we have estimated a

PN
JJ. NN J]. NN

separate parameter for each rule in the transducer. We change this by introducing rule tying, a mechanism

24



original order reordering P(reorder) w P(ins-w)
PRP VB1 VB2 | 0.074 ha_[0.219
PRP VB2 VB1 | 0.723 ta 0.131
PRP VB1 VB2 VB1 PRP VB2 | 0.061 parent | TOP| VB| VB | VB| TO| TO |- wo |0.099
VB1 VB2 PRP | 0.037 node | VB | VB| PRP| TO| TO| NN |~ no |0.094
VB2 PRP VB1 | 0.083 P(None)| 0.735|0.687| 0.344(0.709|0.900(0.800 | ... ni 10.080
VB2 VB1 PRP | 0.021 P(Left) [0.004|0.061|0.004|0.030|0.003|0.096 | - te 0078
VB TO VB TO 0.251 P(Right){0.2601 0.252| 0.652{0.261]0.007|0.104 | - ga |0.062
TO VB 0.749 : :
TO NN 0.107 desu |0.0007
TO NN NNTO 0.803 n—-table : :
r—table
E adores he i listening music to
J | daisuki  1.000 kare  0.952 NULL  0.471 kiku  0.333 ongaku 0.900 | ni 0.216
NULL 0.016 watasi 0.1 Kii 0.333 naru 0.100 | NULL 0.204
nani 0.005 kare 0.055 mi 0.333 fo 0.133
da 0.003 shi 0.021 no 0.046
shi 0.003 nani 0.020 wo 0.038
t—table

Figure 4.3: The parameter tables of Yamada & Knight, 2001.

for constraining more than one rule to be represented by the same parameter in training. By designating a set
of transducer rules as tied we indicate that a single count collection and parameter estimation is performed
for the entire set during training. We denote tied rules by marking each rule in the same tied class with the
symbol @ and a common integer. Thus reordering rules for

g
T
Xo:]] X1 ‘NN

*roy
T
XQIH x1:NN

*7” NN
N
XQIH x1:NN
°*” NN
/\
Xo:]] x1:NN

Unreported in (Yamada and Knight, 2001), the original code contained a constraint that specifically bars
an unaligned foreign word insertion immediately prior to an € English word translation. We incorporate this
change to our model by simply modifying our transducer, rather than by changing our programming code,
by introducing an additional state s, denoting a translation taking place immediately after an unaligned
foreign function word insertion. For every rule that inserts a foreign function word we add an additional

— q]].X() qU.Xl @1

el q”.xl q”.xo @2

— (NN-X0 gNN-X1 @1

e qNN.Xl qNN-xO @2

]

PN

]

NN

]| NN

and pNpy  would appear as:

rule denoting an insertion immediately before a translation, and tie these rules together:

° qTop.X():VB b i.xo r.Xo @ 23

o qTop.X():VB b i.xo 5.X0 @23

o qTop.X():VB — 1.Xp i.xo @24
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model | states initial rules after | training time | % link match % sent. match
rules training (hours)

simple | 4 98,033 12,413 16.95 87.42 52.66

exact | 28 98,513 12,689 17.42 96.58 81.46

perfect | 29 186,649 24,492 53.19 99.85 99.47

Table 4.1: A comparison of the three transducer models used to simulate the model of (Yamada and Knight,
2001). The “simple” model is the four-state approximation described in (Graehl and Knight, 2004). The
“exact” model matches the description in (Yamada and Knight, 2001). The “perfect” model includes a
derivation restriction not described in (Yamada and Knight, 2001) but incorporated in the actual code.

® grop.X0:VB — s.xg i.xg @ 24

To allow subsequent translation, “transition” rules for state s analogous to the transition rules described
above must also be added. And, for each non-€ translation rule, we add an identical translation rule starting
with s instead of ¢, and tie these rules:

® 5. NN 5%

xo:"car”
e t”car” — “kuruma” @ 14
e s.”car” — “kuruma” @ 14

e t car” — €

We trained this model in Tiburon, which contains an implementation of the tree transducer training
algorithm described in (Graehl and Knight, 2004) and (Yamada and Knight, 2001). The alignments learned
by this model matched those learned by the model of (Yamada and Knight, 2001) in 99.47% instances and
all disagreements were due to exact ties between two parameters. In fact, none of the parameter values
learned by our reimplementation differed from the original parameter values by more than 0.00066. Table
4.1 contains complete results.

4.2 A new transducer model for syntactic re-alignment

The GHKM model of syntactic translation (Galley et al., 2004; Galley et al., 2006) is an extended tree-to-string
transducer system. Rules such as those in Figure 4.4 accomplish phrase translation, reordering, and word
insertion and deleting. The rules are single-state top-down rules with single symbol lookahead at their
variable leaves, isomorphic to rules without lookahead but with a state for each looked-ahead type. Each
rule has some probability, and the probability of all rules with the same left side root symbol sum to 1. A
generative story for machine translation that computes p(etree, f) given a foreign sentence f and a parsed
target translation efree rooted at symbol v is:

1. Choose a rule r to replace v, with probability py,.(r(v).

2. For each variable with syntactic type v; in the partially completed (tree, string) pair, continue to choose
rules r; with probability p,,.(ri|v;) to replace these variables until there are no variables remaining.

As described in (Galley et al., 2004) we obtain transducer rules from parallel English-foreign sentences,
heuristic English parses, and word-to-word alignments. The last of these is generally realized by unsuper-
vised (Och and Ney, 2000) or semi-supervised (Fraser and Marcu, 2006; Fraser and Marcu, 2007) models
that are syntax-unaware. However, the generative story described above can be thought of as an alignment
model as well, as each rule carries implicit partial alignment between all lexical elements. The set of rules
in a single derivation implies a complete word alignment for the derived sentence. Given a set of English
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NP-C B & =2 it H i
/\
NPB PP TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS
/\
NPB NN IN NP-C
N |
Nll\IP P|OS surplus in NFB PP
taiwan s NN IIl\I NIl’—C
trade between NPB
DlT C,D NIl\IS
the two shores
R1: NP-C — x0 x2 ':F' x1 R10: NP-C — x0 x2 x1 R10: NP-C — x0 x2 x1
NPB x2:PP /NI< x2:PP NPB x2:PP
x0:NPB  x1:NN xO:NPB  x1:NN x0:NPB  x1:NN
R2: NPB A R11: g — X0 RI7: npg — X0
/\
NNP POS x0:NNP  POS NNP  x0:POS
| | ’s . taiwan .
taiwan s R12: \np — BB R18: pog — A&
| I
taiwan ’s
R3: PP — x0 x1 R13: PP — ZEx0 H R19: PP — x0
x0:IN x1:NP-C IN  x0:NP-C IN  x0:NP-C
R4: IN bd
| in in
m
R5: NP-C — x1x0 R5: NP-C — x1x0 R20: NP-C - x2x0x1
xO:NPB  x1:PP x0:NPB  x1:PP x0:NPB PP
x1:IN  x2:NP-C
R6: PP - B R14: PP - x0 R21: |y —
Hl\T NI;—C IN  xO:NP-C betv!reen
between
between  NPB R15: NP-C — x0 R15: NP-C — x0
DT CD NNS |
| x0:NPB x0:NPB
the two shores
R16: NPB - WE R22: NPB — x0x1
DT CcD NNS x0:DT CD x1:NNS
| | | two
the two shores
R23: NNS — ﬁ% R24: DT Z‘E
l |
shores the
R7: NPB — x0 R7: NPB — x0 R7: NPB — x0
x0:NN x0:NN x0:NN
R&: NNy — BHRY: N —EE |R&: Ny 2 BHRY: v —JlE | R&: Ny 2 BHR: (v — lE
trade surplus trade surplus trade surplus

Figure 4.4: A (English tree, Chinese string) pair and three different sets of multilevel tree-to-string rules that

can explain it.
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BOOTSTRAP GIZA corrus RE-ALIGNMENT EXPERIMENT
EnGLisH worDs  CHINESE WORDS TYPE RULES TUNE  TEST
baseline 19,138,252 39.08 37.77
9,864,294 7,520,779 re-alignment | 26,053,341 39.76 38.69
baseline 23,386,535 39.51 38.93
221,835,870 203,181,379 re-alignment | 33,374,646 40.17 39.96

(a) Chinese re-alignment corpus has 9,864,294 English and 7,520,779 Chinese words

BOOTSTRAP GIZA corrus RE-ALIGNMENT EXPERIMENT
ENGLISH WORDS  ARABIC WORDS TYPE RULES TUNE  TEST
baseline 2,333,839 47.92 47.33
4,067,454 3,147,420 re-alignment | 2,474,737 47.87 47.89
baseline 3,245,499 49.72 49.60
168,255,347 147,165,003 re-alignment | 3,600,915 49.73 49.99

(b) Arabic re-alignment corpus has 4,067,454 English and 3,147,420 Arabic words

Table 4.2: Machine translation experimental results from (May and Knight, 2007) evaluated with case-
insensitive BLEU4.

tree/foreign string pairs and a large set of transducer rules such as those in Figure 4.4 an unsupervised
training algorithm can learn the most useful rules across the corpus and thus learn syntax-informed word
alignments.

In (May and Knight, 2007) we evaluate the impact of this alignment method on Arabic-English and
Chinese-English translation experiments using the training algorithm for tree transducers of (Knight, Graehl,
and May, 2008). We found that, while we were able to get modest improvements using the generative story
above, results improved by incorporating a parameter based on the size of the rules being used, where size
is the number of non-leaf nodes on the left side of the rule. Our revised story is:

1. Choose a size s with cost csie(s)*!
2. Choose a rule r of size s to replace v, with probability p,u.(tv, s).

3. For each variable with syntactic type v; in the partially completed (tree, string) pair, continue to choose

sizes s; followed by rules r; with probability p,..(rilvi, si) to replace these variables until there are no
variables remaining.

This modification effectively ensures that competing derivations of the same training pair have the same
number of parameters. As an example, consider the pair ( NPB - B18). Given the set of rules from

/\
NIl\IP P|OS

Figure 4.4 the three possible derivations are R2, R11-R12, atra’}éina%—Rl%. If we consider each instance of the
cost Csiz(S) as a separate parameter, the same derivations according to the modified story are csiz(3)-Csize(3)-
R2, ¢siz(2)-R11-R12, and c¢siz(2)-R17-R18. This modification helps alleviate EM'’s tendency to overfit to larger
rules in shorter derivations. It is accomplished by a simple modification to the derivation RTG and does
not require any change to the learning model.

Using this generative story we were able to obtain re-alignments that, when used in a syntactic machine
translation system (Galley et al., 2004; Galley et al., 2006; DeNeefe et al., 2007) lead to consistent BLEU
improvements in Chinese-English and Arabic-English translation experiments. We obtain these improve-
ments even when we improve the quality of the bootstrapped alignments by drastically increasing the
amount of data used in GIZA. Table 4.2 contains complete results.
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Chapter 5

Status of Current Work and Anticipation
of Future Work

Past performance is no guarantee
of future results

Standard disclaimer

determinization of tree automata was presented at NAACL (May and Knight, 2006a). Bisimula-
tion minimization results were presented at DLT (Hogberg, Maletti, and May, 2007c) and CIAA
(Hogberg, Maletti, and May, 2007a), as well as in two technical reports (Hogberg, Maletti, and May, 2007b;
Hogberg, Maletti, and May, 2007d), and a journal version has also been prepared (Hogberg, Maletti, and
May, 2008). The first alpha version of Tiburon was released in 2006 concurrent with its descriptive paper
at CIAA (May and Knight, 2006b). Since that time many improvements have been added and subsequent
versions released. The software has been used in graduate-level natural language processing classes and
we know of at least one thesis that used Tiburon to evaluate experiments. Tiburon was also used to replicate
the work presented in (Yamada and Knight, 2001) as discussed in Chapter 4; this replication is detailed in
the CL journal (Knight, Graehl, and May, 2008). Finally, the re-alignment model was proposed and evaluate
in work published at EMNLP (May and Knight, 2007).
However, there are some important holes in this research effort that I hope to fill before presenting the
completed thesis. This chapter details the work to be completed and an approximate timetable in which I
will complete the work.

MUCH of the work described in Chapters 3 and 4 has been presented to the community. Weighted

5.1 Algorithmic improvements

5.1.1 Determinization

A principal deficit in the algorithm presented in (May and Knight, 2006a) is its unsuitability for some
automata with infinite languages, caused by cycles in an automaton’s hypergraph. (Mohri, 1997) noted
that only cyclic FSAs with the “twins” property are able to be determinized. Without a twins property
for weighted tree automata we were unable to determine the subset of determinizable cyclic weighted tree
automata. Subsequently (Allauzen and Mobhri, 2004) described an algorithm based on the twins property
that allows weighted cyclic FSAs without the twins property to be determinized. As such an algorithm is
quite useful for determinization of weighted tree automata, I intend to extend both the twins property and
pre-determinization algorithm to the tree case.
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5.1.2 Minimization

It is important to minimize automata after determinization to lessen the effects of state explosion caused by
determinization. An algorithm to minimize deterministic weighted tree automata is presented in (Maletti,
2008) but no implementation of this algorithm is known to exist, so I will implement it in Tiburon. The
algorithm in (Maletti, 2008) does not use a local heuristic such as the “pushing” described in (Mohri, 1997).
Such a local heuristic would lead to faster minimization, so I will investigate whether it is possible to obtain
a pushing minimization algorithm.

5.1.3 Composition and related algorithms

It has been well established that top-down tree transducers may be composed to the left of top-down,
non-deleting, linear tree transducers (Gécseg and Steinby, 1984). However, as I am unaware of a specific
implementable algorithm for performing this composition, I have devised one. I will present the algorithm
and prove its correctness. I have also engaged in some recent work with collaborators on the ability to
detect whether two particular instances of a class of transducers generally not closed under composition are
in fact composable, such as extended linear non-deleting top-down tree-to-tree transducers. If we are able
to detect such instances of specific composability, I will add the relevant algorithms to Tiburon. This also
may raise other issues. Transducers with rules that change state without consuming input or producing
output, so-called e-rules, are not in general closed under composition but they can be quite useful, and it
is likely that many instances are in fact closed under composition. However, as is shown for the string
case in (Pereira and Riley, 1997), when compositions of this sort are done in a naive manner with weighted
transducers, incorrect composition results can occur unless corrections are made. I intend to apply this type
of correction to tree transducer composition when e-rules are used.

Obtaining the domain projection of a general top-down tree transducer as a finite-state tree automaton
is a desirable property, as we may wish to know the input language of some transformation or obtain the
result of a backward application via composition. As was the case in the previous section, it is known that
the domain of any top-down tree transducer is a regular tree language and thus representable by a tree
automaton (Gécseg and Steinby, 1984) but an explicit algorithm for obtaining the automaton is not, to our
knowledge, available. I will present such an algorithm and prove its correctness.

5.2 Software improvements

Tiburon has a useful set of algorithms already implemented but some already known algorithms have not
yet been implemented. These include backward application of strings or string automata through tree-to-
string transducers, n-best generation of pairs from a tree transducer, and EM training of string automata.
Table 5.1 identifies currently implemented, unimplemented, and undeveloped algorithms for Tiburon. Not
included in this table are algorithms for string automata and transducers, whose algorithms are superseded
by the algorithms of Tiburon, and thus should be representable and handleable.

A principal deficiency in Tiburon is its relative slowness, especially in comparison to mature string
automata toolkits such as OpenFST and Carmel. I have until now neglected efficiency improvements in
favor of feature improvements, but this has led to less utility in Tiburon than is desired. For example, the
re-alignment results of (May and Knight, 2007), while conceivably obtainable by using Tiburon, were in
fact obtained with custom software that builds derivation forests in a bottom-up manner (as opposed to
via the top-down derivation forest construction algorithm specified in (Knight, Graehl, and May, 2008)).
The custom software was also highly optimized to be memory and time efficient. I will conduct a deep
investigation into the secrets behind the speed of OpenFST, including taking advantage of efficient data
structures and implementing different algorithms, such as bottom-up derivation forest construction and
lazy composition where appropriate in an attempt to bring Tiburon to a level of engineering comparable to
that used for the experiments of (May and Knight, 2007).
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Algorithm CFG RTG Tree-Tree Tree-String
domain projection N/A N/A Yes Yes
range projection N/A N/A Soon Soon
EM training Yes Yes Yes Yes
k-best Yes Yes Soon Soon
stochastic generation Yes Yes Soon Soon
intersect Imp Yes Imp Imp
Forward application of tree to... N/A N/A Yes Yes
Forward application of RTG to... N/A N/A Yes Yes
Backward application of tree to... N/A N/A Yes N/A
Backward application of string to... N/A N/A N/A Soon
Backward application of CFG to... N/A N/A N/A Soon
Composition of unextended linear nondeleting... | N/A  N/A Yes N/A
Composition of extended linear nondeleting... N/A N/A Rsrch N/A
Bisim. minimization Soon  Soon Rsrch Rsrch
True minimization Soon  Soon Rsrch Rsrch
Determinization Rsrch  Yes Rsrch Rsrch
coerce string to... Soon N/A N/A N/A
coerce tree to... Yes Yes Yes Yes
coerce CFG to... N/A Yes Yes Yes
coerce RTG to... Yes N/A Yes Yes
coerce tree-to-tree to linear... N/A N/A Rsrch N/A
coerce tree-to-string to linear... N/A N/A N/A Rsrch

Table 5.1: Status of features in Tiburon. Yes = the feature is present in current version 0.5.0. Soon = the
feature has yet to be implemented, but a clear path to its implementation is known. Rsrch = more research
must be done before an algorithm can be determined and implemented. Imp = the feature is known to be
an undecidable algorithm or impossible to construct (this does not preclude limited local tests). N/A = the
algorithm is not applicable to this machine

5.3 Experiment improvements

The results on re-alignment described in (May and Knight, 2007) were presented over relatively small
training corpora compared to the corpora used for high-quality GIZA bootstraps. We believe we can get
even better performance from re-alignment by increasing the size of the training corpus but have not been
able to satisfactorily engineer our code to handle data of this size. We intend to improve our system to
handle two orders of magnitude more data than reported in (May and Knight, 2007).

The empirical results of bisimulation minimization presented in (Hogberg, Maletti, and May, 2007a;
Hogberg, Maletti, and May, 2007c; Hogberg, Maletti, and May, 2007b; Hogberg, Maletti, and May, 2007d)
showed that bisimulation had an appreciable effect on automata that recognized real trees, but the justifi-
cation for the particular automata as they could be used in a practical NLP experiment is weak, given that
there is currently little call for tree language models, and less call for nondeterministic automata when quick
membership checking is desired. However, it may be possible to improve the weighted determinization
results of (May and Knight, 2006a) as those results were based on determinization completing within a
preset amount of processing time. A bisimulation-minimized input could be determinized more quickly
and thus complete in the allotted time, leading to more reorganization of k-best lists, and better performance.
We will perform this experiment to help validate both algorithms.

5.4 Additional modeling work
In (Knight, Graehl, and May, 2008) we described how tree machine formalisms could be used for clean

representations of the complicated syntactic model of (Yamada and Knight, 2001). If a tree transducer
toolkit is to be useful it should be applicable to a wide variety of syntax models. We will investigate how
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tree machines in particular and Tiburon in particular may be used for parsing models such as those in
(Collins, 1997), (Charniak, 2001), and (Petrov and Klein, 2007).

5.5 Timeline to completion

In the early Summer of 2008 I have been engaged in proposal preparation activities. Through the summer
I will begin on more advanced re-alignment experiments in preparation of a journal paper dealing with
multiple transformations of training data for improved machine translation (joint work with Wei Wang,
Kevin Knight, and Daniel Marcu). Also in the summer I will finalize a minor release of Tiburon, 0.5.0, which
contains implementations of projection and composition, using the previously described new algorithms.

In the Fall of 2008 I will conduct an experiment on using bisimulation minimization before determiniza-
tion to obtain faster determinization and thus acquire higher quality k-best output lists. I will also work on
a major release of Tiburon, version 1.0, which will contain all currently known implementation, especially
including backward application of strings and CFGs onto tree-to-string transducers, essentially the ability
to parse. I will also make Tiburon backward compatible with classic string machine algorithms, and thus
support string transducer and string automaton formats.

In the Spring of 2009 I will turn to more algorithmic matters. I will focus on determinization and
minimization algorithm improvements. This will hopefully lead to improved algorithms added to Tiburon.
I'will also work on an investigation of parser models, expressing them in the formalisms described here to
demonstrate the powers and limitations of tree transducers and automata.

Finally, in the Summer of 2009 I will work on engineering efforts to improve the performance of Tiburon.
This includes an investigation into the codebase of OpenFST (Riley et al., 2007) and exploration of lazy
algorithms and coordinated search in lieu of explicit composition. The end result will be an optimized
Tiburon 2.0. I will then allot a month at the end of the summer to finish composing the final thesis (it is
my hope I will be composing all along this process) and finally defend. This timeline is summarized in
Table 5.2.

32



€e

Summer

Fall

Spring

Summer

5/08 | 6/08 | 7/08 [ 8/08 | 9/08 | 10/08 | 11/08 [ 12/08 | 1/09 | 2/09 | 3/09

4/09

5/09 [ 6/09 | 7/09 | 8/09

Prepare Proposal

Release 0.5.0

Re-Alignment Experiments

Release

1.0

Algorithm Improvements

Tree Automaton Parser Models

Table 5.2: Overview of proposed schedule

Speed Improvements

Release 2.0

Thesis and Defense
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