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Abstract

Weighted finite-state string transducer cascades are a powerful formalism for models

of solutions to many natural language processing problems such as speech recognition,

transliteration, and translation. Researchers often directly employ these formalisms to

build their systems by using toolkits that provide fundamental algorithms for transducer

cascade manipulation, combination, and inference. However, extant transducer toolkits

are poorly suited to current research in NLP that makes use of syntax-rich models. More

advanced toolkits, particularly those that allow the manipulation, combination, and

inference of weighted extended top-down tree transducers, do not exist. In large part,

this is because the analogous algorithms needed to perform these operations have not

been defined. This thesis solves both these problems, by describing and developing

algorithms, by producing an implementation of a functional weighted tree transducer

toolkit that uses these algorithms, and by demonstrating the performance and utility of

these algorithms in multiple empirical experiments on machine translation data.

xix



Chapter 1

I: M  T

1.1 A cautionary tale

One of the earliest syntactic parsers was built in 1958 and 1959 to run on the Univac 1

computer at the University of Pennsylvania and attempts were made to recreate the

parser some forty years hence on modern machines [60]. Given that computer science

was in its infancy at the time of the parser’s creation and much had changed in the

interim, it is not surprising that the resurrectors relied on the hundreds of pages of

flowcharts and program specifications describing the system as guidance, rather than

the original assembly code itself. Unfortunately, due to ambiguities in the documentation

and damage to the archives, some guesses had to be made in reimplementation, and thus

the reincarnation of the parser is only an approximation of the original system at best. As

the resurrectors were faithful to the design of the original parser, however, they built the

modern incarnation of the parser as a single piece of code designed to do a single task.

Of course, this time they wrote the program in C rather than assembly. If, forty years

from now, a new generation of computer science archaeologists wishes to re-recreate
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the parser, one hopes the C language is still understandable, and that the source code

survives. If this source is for some reason unavailable, the team will once again have

to re-write the parser from documentation alone. As before, if the documentation is

incomplete or imprecise, only an approximation of the original program will be built,

and all the work of the resurrectors will be for naught.

1.2 Transducers to the rescue

As it happens, this parser, now called Uniparse, was designed as a cascade of finite-

state transducers, abstract machines that read an input tape and write an output tape

based on a set of state transition rules. Transducers have been widely studied and have

numerous attractive properties; among them is the property of closure under composition—

the transformations accomplished by a sequence of two transducers can be captured by a

single transducer. These properties, along with effective algorithms that take advantage

of them, such as an algorithm to quickly construct the composition of two transducers,

allow any program written in the form of a transducer cascade, as Uniparse was designed,

to be easily and effectively handled by a generic program that processes and manipulates

transducers.

Rather than writing Uniparse from the original design schematics in custom assembly

or C, the resurrectors could have encoded the schematics themselves, which are already

written as transducers, into a uniform format that is suitable for reading by a generic

finite-state transducer toolkit and used transducer operations such as composition and
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projection (the obtaining of either the input or output language of a transducer) to per-

form the parsing operations, rather than writing new code. By expressing Uniparse as

transducer rules, the resurrectors would have been able to combine the transducer design

with its code implementation. Any alterations to the original design would have been

encoded in the set of transducer rules, preventing any “hacks” from hiding in the code

base. A file containing solely transducer rules requires no additional documentation

to explain any hidden implementation, as the entire implementation is represented in

the rules. Most importantly, aside from formatting issues, a file of transducer rules is

immune from the havoc time wreaks on compiled code. Future generations could use

their transducer toolkits on these files with a trivial number of changes.

Of course, someone has to build the transducer toolkit itself. And this naturally

raises the question: Is implementing a program for finite-state transducers rather than

for a syntactic parser simply trading one specific code base for another? Thankfully,

transducer cascades are useful for more than light deterministic parsing. In the fields

of phonological and morphological analysis Kaplan and Kay [63] realized the analysis

rules linguists developed could be encoded as finite-state transducer rules, and this

led first to a transducer-based morphological analysis system [80] and eventually to

the development of XFST [70], an entire finite-state toolkit complete with the requisite

algorithms needed to manipulate transducers and actually get work done. The set

of natural language transformation tasks capturable by regular expressions such as

date recognition, word segmentation, some simple part-of-speech tagging, and spelling

correction, and light parsing such as that done by Uniparse can be expressed as cascades

of finite-state transducers [69]. The availability of this toolkit allowed researchers to
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simply write their models down as transducer rules and allow the toolkit to do the

processing work.

1.3 A transducer model of translation

A concrete example is helpful for demonstrating the usefulness of transducer cascades.

Imagine we want to build a small program that translates between Spanish and English.

Here is a simple model of how an English sentence becomes a Spanish sentence:

• An English sentence is imagined by someone fluent in English.

• The words of the sentence are rearranged—each word can either remain in its

original position or swap places with the subsequent word.

• Each word is translated into a single Spanish word.

Such a model obviously does not capture all translations between Spanish and En-

glish, but it does handle some of them, and thus provides a good motivating example.

Moreover, it is fairly easy to design software to perform each step of the model, even if

it might be hard to design a single piece of software that encodes the entire model, all

at once. In this way we are espousing the “conceptual factoring” envisioned by Woods

[133].

Having envisioned this model of machine translation, an enterprising student could

set about writing a program from scratch that implements the model. However, rather
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than enduring lengthy coding and debugging sessions the student could instead rep-

resent the model by the following cascade of finite-state transducers which may be

composed into a single transducer using a toolkit such as XFST:

• A finite-state automaton A, which is an English language model, i.e., it recognizes the

sentences of English. This is a special case of a finite-state transducer—one where

each rule has a single symbol rather than separate reading and writing symbols.

A simple automaton for English maintains a state associated with the last word

it saw, and only has transitions for valid subsequent words. Let us semantically

associate the state qx with cases where the last recognized word was x. Let qSTART be

the state representing the beginning of a sentence. We write rules like:

qSTART
the
−−→ qthe qgreen

ball
−−→ qball

qthe

green
−−−−→ qgreen qgreen

horse
−−−−→ qhorse

qthe
ball
−−→ qball . . .

and so on. This automaton allows phrases such as “the ball” and “the green horse”

but not “green ball the” or “horse green”.

• A reordering transducer B with rule patterns of the following form for all words a

and b:

r a:ε
−−→ ra r a:a

−−→ r ra
b:b a
−−−→ r

Here, ε on the right side means no symbol is written when the rule is invoked,

though the symbol on the left is consumed. The rules are instantiated for each

possible pair of words, so given the English vocabulary {the, ball, green}we would

have:
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r the:ε
−−−→ rthe r ball:ε

−−−−→ rball r
green:ε
−−−−−→ rgreen

r the:the
−−−−−→ r r ball:ball

−−−−−−→ r r
green:green
−−−−−−−−→ r

rthe
ball:ball the
−−−−−−−−→ r rball

ball:ball ball
−−−−−−−−−→ r rgreen

ball:ball green
−−−−−−−−−−→ r

rthe

green:green the
−−−−−−−−−−−→ r rball

green:green ball
−−−−−−−−−−−→ r rgreen

green:green green
−−−−−−−−−−−−−→ r

rthe
the:the the
−−−−−−−→ r rball

the:the ball
−−−−−−−−→ r rgreen

the:the green
−−−−−−−−−→ r

• A one-state transducer C that translates between English and Spanish, e.g.:

s
ball:pelota
−−−−−−−→ s s horse:caballo

−−−−−−−−−→ s

s the:el
−−−−→ s s

green:verde
−−−−−−−−→ s

s the:la
−−−−→ s . . .

These three transducers can be composed together using classic algorithms to form

a single translation machine, D, that reorders valid English sentences and translates

them into (possibly invalid) Spanish in a single step. Run in reverse, D translates

arbitrary sequences of Spanish words and, if possible, reorders them to form valid

English sentences.

Next, a candidate Spanish phrase can be encoded as a simple automaton E, with q0

as the initial state and the following rules:

q0
la
−→ q1 q1

pelota
−−−−→ q2 q2

verde
−−−−→ q3

This automaton represents exactly the phrase “la pelota verde”. It can be composed to the

right of D, forming a transducer F that reorders valid English sentences and, if possible,

translates them into exactly the phrase “la pelota verde”. The domain projection of F,

then, is an automaton that represents all valid English translations of the Spanish phrase,

which in this case is the single phrase “the green ball.” Notice that this translation

machine was built from simple transducers: A, which only recognizes valid English
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but is completely unaware of Spanish, B, which reorders English without any regard for

proper grammar, C, which translates between English and Spanish but is not constrained

to the proper grammar of either language, and D, the candidate Spanish sentence. By

chaining together several simple transducers that each perform a limited task we can

quickly build complicated and powerful systems.

There are many problems with this translation model. One of the most obvious is that

we cannot handle cases where the number of English and Spanish words is not the same,

so the translation between “I do not have” and “No tengo” is impossible. However,

successive refinements and introductions of additional transducers, some with ε-rules,

can help make the system better. Implementing the same refinements and model changes

in a custom code implementation can require many more tedious coding and debugging

cycles.

There is a more fundamental problem with this model that cannot easily be resolved

by reconfiguring the transducers. If there are multiple valid answers, how do we know

which to choose? In this framework a transformation is either correct or incorrect; there

is no room for preference. We are faced with the choice of either overproducing and not

knowing which of several answers is correct, or underproducing and excluding many

valid transformations. Neither of these choices is acceptable.

1.4 Adding weights

While the development of a finite-state transducer toolkit was very helpful for attacking

the problems of its age, advances in computation allowed modeling theory to expand
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beyond a level conceivable to the previous generation. Specifically, the availability of

large corpora and the ability to process these corpora in reasonable time coupled with

a move away from prescriptivist approaches to computational linguistics motivated a

desire to represent uncertainty in processing and to empirically determine the likelihood

of a processing decision based on these large corpora. Transducers that make a simple

yes-or-no decision were no longer sufficient to represent models that included confidence

scores. Researchers at AT&T designed FSM, a toolkit that harnesses weighted finite-state

transducers—a superset of the formalism supported by XFST [103]. The association

of weights with transducer rules affected the previous algorithms for composition and

introduced new challenges. Along with the physical toolkit code, new algorithms were

developed to cope with these challenges [109, 104, 100]. Carmel [53], a toolkit with

similar properties as FSM, but with an algorithm for EM training of weighted finite-state

transducers [38], was also useful in this regard. These toolkits and others like them were

quite helpful for the community, as the state of NLP models had greatly expanded to

include probabilistic models and without a decent weighted toolkit around, the only

option to test these models was nose-to-the-grindstone coding of individual systems.

Subsequent to their invention and release a number of published results featured the use

of these toolkits and transducer formalisms in model design [110, 123, 74, 24, 137, 83, 79,

94].

Returning to our translation example, we can see that some word sequences are

more likely than others. Additionally, some translational correspondences are more

likely than others. And perhaps we want to encourage the word reordering model to

preserve English word order whenever possible. This information can be encoded using
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weights on the various rules. Consider the language model A: both “green ball” and

“green horse” are valid noun phrases, but the former is more likely than the latter. In

the absence of any other evidence, we would expect to see “ball” after “green” more

often than we would see “horse”. However, we would expect to see “green horse” more

often than “green the”. By looking at a large amount of real English text, we can collect

statistics on how often various words follow “green”, and then calculate a probability

for each possible word. Such weights are added to the relevant rules as follows:

qgreen
ball/0.8
−−−−−→ qball qgreen

horse/0.19
−−−−−−−→ qhorse qgreen

the/0.01
−−−−−→ qthe

The product of the weights of each rule used for a given sentence is the weight of the

whole sentence. Notice that we did not exclude the very unlikely sequence “green the”.

However, we gave that rule very low weight, so any sentence with that sequence would

be quite unlikely. This represents an increase in power over the unweighted model.

Previously, we would not want to allow such a phrase, as it almost certainly would be

wrong. Now we can still acknowledge the extreme unlikeliness of the phrase, but allow

for the rare situation where it is the most likely choice available after other possibilities

have been eliminated.

We demonstrate our preferences in the other transducers in the chain through weights

similarly. The reordering transducer, for instance, should favor some reorderings and

disfavor others. An English noun phrase that contains an adjective (such as “green ball”)

would typically be translated with the noun first in Spanish. However, no reordering

would be done for a noun phrase without adjectives (such as “the ball”). The following

weighted transducer rules reflect these preferences:
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Figure 1.1: The general noisy channel model. The model is proposed in the “story”
direction but used in the “interpretation” direction, where a noisy input is transformed
into the target domain and then validated against the recognizer.

q
the:ε/0.1
−−−−−−→ qthe q

green:ε/0.7
−−−−−−−−→ qgreen

q
the:the/0.9
−−−−−−−→ q q

green:green/0.3
−−−−−−−−−−−→ q

qthe
ball:ball the/1
−−−−−−−−−−→ q qgreen

ball:ball green/1
−−−−−−−−−−−−→ q

qthe

green:green the/1
−−−−−−−−−−−−→ q qgreen

green:green green/1
−−−−−−−−−−−−−−→ q

qthe
the:the the/1
−−−−−−−−−→ q qgreen

the:the green/1
−−−−−−−−−−−→ q

The translation model we have built is getting more and more powerful. It has begun

to take on the shape of a very useful and often-applied general model of transformation—

the noisy channel model [118]. The key principle behind this model, depicted in Figure 1.1,

is the separation of a sensible transformation task into the cascade of a transformation

task (without regard to sensibility of the output) followed by a recognition task that

only permits sensible output. By simply substituting the appropriate transducer or

transducers into our chain we can perform diverse tasks without altering the underlying

machinery. If we remove the permutation and translation transducers from our model,

and instead add a word-to-phoneme transducer followed by a phoneme-to-speech signal

transducer, we can perform speech recognition on some given speech signal input. If
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we replace the word language model with a part-of-speech language model and the

transducer cascade with a tag-to-word transducer we can perform part-of-speech tagging

on some word sequence input. In all of these cases the only work required to transform

our translation machine into a speech signal-recognition machine or a grammar markup

machine is that of rule set construction, which is in its essence pure model design. The

underlying mechanics of operation remain constant. This illustrates the wide power

of weighted finite-state toolkits and explains why they have been so useful in many

research projects.

1.5 Going further

We must acknowledge that our model is still a simplification of “real” human translation,

and, for the foreseeable future, this will continue to be the case, as we are limited by

practical elements, such as available computational power and data. This has long been

a concern of model builders, and thus in every generation, compromises are made. In the

1950s, severe memory limitations precluded anything so general as a finite-state-machine

toolkit. In the 1980s, few useful corpora existed and normally available computational

power was still too limited to support the millions of words necessary to adequately train

a weighted transducer cascade. In the present age we have more computational power

and large available corpora. We should consider whether there are yet more limitations

imposed by the technology of the previous era that can now be relaxed.

One particular deficiency that arises, particularly in our translation model, is the

requirement of linear structure, that is, a sequential left-to-right processing of input.
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Human language translation often involves massive movement depending on syntactic

structure. In the previous examples we were translating between English and Spanish,

two predominately Subject-Verb-Object (SVO) languages, but what if we were translating

between English and Japanese? The former is SVO but the latter is SOV. The movement

of an arbitrarily long object phrase after an arbitrarily long verb phrase (or vice-versa) is

simply not feasible with a formalism that at its fundamental core must process its input

in linear order with a finite number of states.

The disconnect between linear processes and the more hierarchical nature of natural

language is an issue that has long been raised by linguists [22]. However, practical

considerations and a realization that a limited model with sufficient data was good

enough for the time being led empirical research away from syntactic models for nearly

half a century.

A survey of recent work in NLP shows there is evidence that syntax-rich empirical

models may now be practical. Recent work with successful practical results in language

modeling [20], syntactic parsing [25], summarization [77], question answering [37], and

machine translation [136, 47, 31], to name a few, clearly indicates there are gains to be

made in syntactic NLP research. One common thread these papers have, however, is

that the results behind the presented models were obtained via custom construction of

one-off systems. Weighing the benefits of the syntax translation models of Yamada and

Knight [136] and Galley et al. [47], for example, requires access to the projects’ respective

code bases or re-engineering efforts. Consequently, few if any such comparative studies

exist, and the cycle of model improvement is generally only possible for the original

model engineers. Such a limitation is harmful to the community.

12



1.6 Better modeling through tree transducers

S

NP

NNP

John

VP

VB

threw

NP

DT

the

JJ

large

JJ

green

NN

ball

S

NP

NNP

John

VP

VB

tiró

NP

DT

la

JJ

gran

NN

pelota

JJ

verde

Figure 1.2: An (English, Spanish) tree pair whose transformation we can capture via tree
transducers.

The good news is many of these models can be expressed as a cascade of finite-state

tree transducers. Tree transducers were invented independently by Rounds [116] and

Thatcher [128] to support Chomskyan linguistic theories [23]. The theory community

then conducted extensive study into their properties [48, 49, 27] without much regard

for the original linguistic motivation. Weighted tree automata, the direct analogue of

weighted string automata, have been studied as a formal discipline [8, 41], as have

weighted regular tree grammars [1]. This latter formalism generates the same class of

tree languages as weighted tree automata, and closely resembles weighted context-free

grammars, so it is the preferred formalism used in this thesis.

Let us consider how syntax can improve our previous toy translation model. Imagine

we are now trying to translate between English and Spanish sentences annotated with

syntactic trees, such as those in Figure 1.2. We can accomplish this with weighted

regular tree grammars and top-down tree transducers, which are introduced formally

in Chapter 2, but which we describe informally now, by way of comparison to the

previously described finite-state (string) automata and transducers.
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String automaton rules are of the form q
a/w
−−→ r, indicating that, with weight w, a

machine in state q writes symbol a and changes to state r, where it continues, writing

further results to the right of a in the output string. Tree grammar rules, on the other

hand, are of the form q w
−→ τ. This rule indicates that, with weight w, a machine in state

q writes tree τ. Some of the leaves of τ may be states such as r. If they are, further rules

are used to write trees at these points in τ.

String transducer rules are of the form q
a:b/w
−−−−→ r, indicating that, with weight w, a

machine in state q reading symbol a writes symbol b and changes to state r, where it

continues by processing the symbol to the right of a in the input string and writing the

result to the right of b in the output string. Tree transducer rules, on the other hand, are

of the form q.γ(x1 . . . xn) w
−→ τ. Such a rule indicates that, with weight w, a machine in

state q reading a tree that has a root label γ and n immediate children writes tree τ. Some

of the leaves of τ are of the form r.xk, indicating that the kth immediate child of the tree

should be processed in state r and the result written at that location in the output tree.

Since we are now considering syntax, we are no longer simply transforming between

surface strings in English and Spanish, but between syntactic trees. Consider the power

our transducer chain has now that we have introduced this formalism:

• Rather than recognizing valid English phrases, our new tree grammar A′, the

descendant of the string automaton A, must now recognize valid English trees. Let

q be the initial state of A′. Here’s what some rules from A′ could look like:
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S

qnp-sing qvp-sing

q 1
−→ NP

qdt qnn

qnp-sing
0.7
−−→ NP

qdt qjj qnn

qnp-sing
0.2
−−→

NP

qdt qjj qjj qnn

qnp-sing
0.1
−−→ DT

the

qdt
0.8
−−→ DT

a

qdt
0.2
−−→

JJ

green

qjj
0.8
−−→ JJ

large

qjj
0.2
−−→ JJ

blue

qjj
0.1
−−→

NN

ball

qnn
0.7
−−→

Already we can see some ways in which this grammar is more powerful than its

string automaton ancestor. Words are conditioned on their parts of speech, so

a more appropriate distribution for particular word classes can be defined. The

top-down approach enables long-distance dependencies and global requirements.

For example, the rule q −→ S(qnp-sing qvp-sing) indicates the sentence will have both a

noun phrase and verb phrase, and that both will be singular, even though it is not

yet known where the singular noun and verb will appear within those phrases.

• Although we can now get quite creative with our permutation model, we can

demonstrate the increased power of tree transducers by designing a B′ that has the

same idea expressed in B, i.e., allow re-ordering one level at a time. The initial state

is r and these are some rules:
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NP

x0 x1 x2 x3

NP

rdt.x0 rnn.x3 rjj.x1 rjj.x2

0.4
−−→rnp S

x0 x1

S

rnp.x0 rvp.x1

0.7
−−→r

NP

x0 x1 x2 x3

NP

rdt.x0 rjj.x1 rnn.x3 rjj.x2

0.3
−−→rnp S

x0 x1

S

rvp.x1 rnp.x0

0.3
−−→r

NP

x0 x1 x2 x3

NP

rdt.x0 rjj.x1 rnn.x3 rjj.x2

0.1
−−→rnp

The reordering at the top of the tree, swapping the positions of arbitrarily large

noun phrases and verb phrases, does sentence-wide permutation in a single step.

Doing the equivalent with string-based transducers would require a unique state

for every possible noun phrase, making such an operation generally impossible.

The lower-level inversion could feasibly be accomplished with a string transducer,

but it would still require states that encode the sequence of adjectives seen until

the noun at the end of the phrase is reached.

• We can use the power of syntax to our advantage in the design of the translation

transducer, C′. Recall that C has a set of word-to-word rules that do not take context

into account. We can easily take context into account in C′ by our selection of states.

The following selection of rules from C′ indicate that all words in the noun phrase

will be singular and feminine, ultimately constraining “the” to translate as “la” so

as to match the translation of “ball” as “pelota.”
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O
S T

   

determinization Yes Yes Yes No
K-best N/A Yes N/A Alg
intersection Yes Yes Yes PoC
EM training Yes Alg

Table 1.1: Availability of algorithms and implementations for various classes of automata.
Yes = an algorithm is known and an implementation is publicly available. Alg = an
algorithm is known but no implementation is known to be available. PoC = a proof of
concept of the viability of an algorithm is known but there is no explicit algorithm. No
= no methods have been described.

O
S T

   

composition Yes Yes PoC PoC
domain and range projection Yes Yes PoC PoC
application Yes Yes PoC PoC
EM training Yes Alg

Table 1.2: Availability of algorithms and implementations for various classes of trans-
ducers, using the key described in Table 1.1.

NP

x0 x1

NP

sfem.x0 sfem.x1

1
−→sfem DT

x0

DT

sfem.x0

1
−→sfem NN

x0

NN

sfem.x0

1
−→sfem

the la1
−→sfem ball pelota.15

−−→sfem

1.7 Algorithms for tree transducers and grammars

Before deciding to build a new toolkit it is useful to take stock of the availability of

needed algorithms. Tables 1.1 and 1.2 identify a set of useful operations for automata

and transducers. The operations under consideration all have efficient algorithms that

have been implemented for weighted string automata and transducers, primarily in

FSM, OpenFst, and Carmel. For tree automata, the situation is more dire—algorithms
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for determinization and intersection of unweighted tree automata exist and have been

implemented in Timbuk [50] but as there were no previous weighted tree automata toolk-

its, it is understandable that there would be no implementations of relevant algorithms.

No tree transducer software had implementations of composition, projection, or appli-

cation, and perhaps it is understandable, as these operations generally have not been

described in algorithmic manners by practitioners of formal language theory, who do not

need such details for their proofs. A good example which illustrates this point of view is

the classic construction for unweighted top-down tree transducer composition by Baker

[6]. Her construction essentially directs that a transducer rule in a composition of two

transducers, M1 and M2 be formed by combining a rule q.σ −→ u from the first, where u is

some tree, with a state p from the second, to form(q, p).σ −→ t, for every t that is a transfor-

mation of u starting in p by M2.1 Such a construction is certainly correct, and it is known

that under certain restrictions on M1 and M2 a finite set of t can be found. Furthermore,

in the weighted extension of this construction by Maletti [89] the additional constraint

that the weight of the transformation from u to t by M2 be calculable is known to be

determinable for the closure cases. But while this is sufficient for proving theorems it

does not suffice for building software. The means of finding every t for u is not described;

the construction demonstrates it can be built, but does not describe a practical algorithm

for how it should be built. The status of such operations is indicated in Tables 1.1 and 1.2

as “proofs of concept”, in that no concrete, implementable algorithms have been shown

for their operation. I have thus delved into these declarative constructs and exposed

algorithms useful to the software-writing community that implement these operations.

1This is a significant paraphrase from page 195 of [6], as we don’t wish to introduce detailed terminology
just yet.
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And, in some cases, I have designed new algorithms, or extended existing algorithms or

declarative constructs to the weighted tree automaton and weighted extended top-down

tree transducer case.

1.8 Building a new toolkit

Weighted tree machines are a powerful formalism for natural language processing mod-

els, and as the example above indicates, constructing useful models is not difficult.

However, prior to this thesis there was one main roadblock preventing progress in

weighted tree machine modeling of the scale seen for weighted string machines: no

appropriate toolkit existed. There were some existing tree automata and transducer

toolkits [15, 50, 58, 34] but these are unweighted, a crucial omission in the age of data-

driven modeling. Additionally, they are chiefly aimed at the logic and automata theory

community and are not suited for the needs of the NLP community.

To guide me in this work I followed the lead of previous toolkits. I have chosen simple

design semantics and a small set of desired operations. As noted above, some algorithms

for these operations already existed and could more or less be directly implemented,

some had to be inferred from declarative constructs, and some required novel algorithm

development. The resulting toolkit, Tiburon, can read, write, and manipulate large

weighted tree-to-tree and tree-to-string transducers, regular tree grammars, context-free

grammars, and training corpora.

To summarize, these are the contributions provided in my thesis:
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• I present algorithms for intersection of weighted regular tree grammars, composi-

tion and projection of weighted tree transducers, and application of weighted tree

transducers to grammars that were previously only declarative proofs of concept.

I also demonstrate the connection between classic parsing algorithms and one par-

ticular kind of application; that of tree-to-string transducers to strings. I provide

these algorithms for weighted extended tree transducers, a formalism that is more

useful to the NLP community than classical weighted tree transducers, though

somewhat neglected by formal language theory.

• I present a novel algorithm for practical determinization of acyclic weighted regular

tree grammars and show the algorithm’s empirical benefits on syntax machine

translation and parsing tasks. In joint work with colleagues from formal language

theory we prove correctness and examine the applicability of the algorithm to some

classes of cyclic grammars.

• I present novel algorithms for application of tree transducer cascades to grammar

input, as well as more efficient on-the-fly versions of these grammars that take

advantage of lazy evaluation to avoid unnecessary exploration. I demonstrate the

performance advantages of these on-the-fly algorithms.

• I demonstrate the use of weighted tree transducers as formal models in the im-

provement of the state of the art in syntax machine translation by using an EM

training algorithm for weighted tree transducers to improve automatically induced

word alignments in bilingual training corpora, leading to significant BLEU score

increases in Arabic-English and Chinese-English MT evaluations.
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• I provide Tiburon, a tree automaton and transducer toolkit that provides these

fundamental operations such that complicated tree-based models may easily be

represented. The toolkit has already been used on several research projects and

theses [56, 113, 126, 12, 125].

Here is an outline of the remainder of this thesis:

• Chapter 2 provides a formal basis for the remainder of the work. It defines key

structures such as trees, grammars, and transducers, and presents algorithms for

basic tree transducer and grammar operations.

• Chapter 3 presents the first practical determinization algorithm for weighted reg-

ular tree grammars. I outline the development of this algorithm, show, in joint

work, a proof of correction, and demonstrate its effectiveness on two real-world

experiments.

• Chapter 4 presents novel methods of efficient inference through tree transducers

and transducer cascades. It also contains a detailed description of on-the-fly infer-

ence algorithms which can be faster and use less memory than traditional inference

algorithms, as demonstrated in empirical experiments on a machine translation

cascade.

• Chapter 5 presents a method of using tree transducer training algorithms to ac-

complish significant improvements in state-of-the-art syntax-based machine trans-

lation.
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• Chapter 6 presents Tiburon, a toolkit for manipulating tree transducers and gram-

mars. Tiburon contains implementations of many of the algorithms presented in

previous sections.

• Chapter 7 concludes this work with a high-level view of what has been presented

in the previous chapters and outlines useful future directions.

22



Chapter 2

W R T G W T

T

In this chapter we introduce basic terminology used throughout this thesis. In particu-

lar we define the formal tree grammars and tree transducers that are the fundamental

structures this thesis is concerned with. We also make note of basic algorithms for com-

bining, transforming, and manipulating these machines. Although essentially all of the

algorithms in this chapter were known previous to this work, much of it has not been

presented in this way, designed for those seeking to provide an implementation. Addi-

tionally, some algorithms known to the community as “folklore” and various extensions

to more general formalisms are presented.

Because a good deal of formal notions are presented in this chapter, particularly early

on, it may behoove the reader to read this chapter lightly, and return to relevant sections

when the precise definition of a term or piece of symbology is needed.
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2.1 Preliminaries

Much of the notation we use is adapted from Section 2 of Fülöp and Vogler [45], some

quite extensively. Additional notation is adapted from Section 3.1.1 of Mohri [101].

2.1.1 Trees

A ranked alphabet is a tuple (Σ, rk) consisting of a finite set Σ and a mapping rk : Σ → N

which assigns a rank to every member of Σ. We refer to a ranked alphabet by its carrier

set, Σ. Frequently used ranked alphabets are Σ, ∆, and Γ. For every k ∈ N, Σ(k)
⊆ Σ is

the set of those σ ∈ Σ such that rk(σ) = k. When it is clear, we write σ(k) as shorthand for

σ ∈ Σ(k). We let X = {x1, x2, . . .} be a set of variables; Xk = {x1, . . . , xk}, k ∈ N. We assume

that X is disjoint from any ranked alphabet used in this work. A tree t ∈ TΣ is denoted

σ(t1, . . . , tk) where k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ.1 For σ ∈ Σ(0) we write σ ∈ TΣ

as shorthand for σ(). For every set A disjoint from Σ, let TΣ(A) = TΣ∪A, where for all

a ∈ A, rk(a) = 0. We define the positions of a tree t = σ(t1, . . . , tk), for k ≥ 0, σ ∈ Σ(k), and

t1, . . . , tk ∈ TΣ, as a set pos(t) ⊂ N∗ such that pos(t) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ti)}. The

set of leaf positions leaves(t) ⊆ pos(t) are those positions v ∈ pos(t) such that for no i ∈ N,

vi ∈ pos(t). We presume standard lexicographic orderings < and ≤ on pos. Let t, s ∈ TΣ

and v ∈ pos(t). The label of t at position v, denoted by t(v), the subtree of t at v, denoted by

t|v, and the replacement at v by s, denoted by t[s]v, are defined as follows:

1Note that these are ranked trees, but in natural language examples we may see the same symbol with
more than one rank. For example, both the phrases “boys” and “the boys” are noun phrases, and one
frequently sees their tree representations as, respectively, NP(boys) and NP(the boys). From a formal
perspective we should distinguish the parent nonterminals, writing, e.g., NP1(boys) and NP2(the boys),
where NP1 ∈ Σ

(1) and NP2 ∈ Σ
(2), and indeed these two parent symbols are interpreted differently, but to

simplify notation and remain consistent with common practices, they will both appear on the page as NP.
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Figure 2.1: Trees from Example 2.1.1.

1. For every σ ∈ Σ(0), σ(ε) = σ, σ|ε = σ, and σ[s]ε = s.

2. For every t = σ(t1, . . . , tk) such that k = rk(σ) and k ≥ 1, t(ε) = σ, t|ε = t, and

t[s]ε = s. For every 1 ≤ i ≤ k and v ∈ pos(ti), t(iv) = ti(v), t|iv = ti|v, and

t[s]iv = σ(t1, . . . , ti−1, ti[s]v, ti+1, . . . , tk).

The size of a tree t, size(t), is |pos(t)|, the cardinality of its position set. The height of a tree

t, height(t), is 1 if its size is 1; else, height(t) = 1+max(height(t|i) | 1 ≤ i ≤ rk(t(ε))). The yield

set of a tree t, ydset(t), is the set of labels of its leaves, thus ydset(t) = {t(v) | v ∈ leaves(t)}.

Example 2.1.1 Let Σ = {α(0), β(1), γ(2), η(2), σ(3)
}. Let A = {z}. Let t = σ(γ(α, β(z)), η(z, α), α).

Then, t ∈ TΣ(A), pos(t) = {ε, 1, 2, 3, 1.1, 1.2, 2.1, 2.2, 1.2.1}, leaves(t) = {1.1, 1.2.1, 2.1, 2.2, 3}.

t(2) = η, and t|1.2 = β(z). Let s = β(β(α)). Then, t[2.1]s = σ(γ(α, β(z)), η(β(β(α)), α), α),

size(t) = 9, height(t) = 4, size(t[2.1]s) = 11, height(t[2.1]s) = 5, and ydset(t) = {α, z}. For

greater clarity, t, s, and t[2.1]s are reproduced in a more ”treelike” fashion in Figure 2.1.
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2.1.2 Semirings

A semiring (W,+, ·, 0, 1) is an algebra consisting of a commutative monoid (W,+, 0) and a

monoid (W, ·, 1) where · distributes over +, 0 , 1, and 0 absorbs ·, that is, w · 0 = 0 ·w = 0

for any w ∈ W. A semiring is commutative if · is commutative. A semiring is complete

if there is an additional operator
⊕

that extends the addition operator + such that for

any countable index set I and family (wi)i∈I of elements ofW,
⊕

calculates the possibly

infinite summation of (wi)i∈I. We write
⊕

i∈I

wi rather than
⊕

(wi)i∈I.
⊕

has the following

properties:⊕
extends +:

⊕
i∈I

wi = 0 if |I| = 0 and

⊕
i∈I

wi = wi if |I| = 1.

⊕
is associative and commutative:

⊕
i∈I

wi =
⊕

j∈J

⊕
i∈I j

wi


for any disjoint partition I =

⋃
j∈J

I j.

· distributes over
⊕

from both sides: w ·

⊕
i∈I

wi

 =⊕
i∈I

(w · wi) and⊕
i∈I

wi

 · w =⊕
i∈I

(wi · w)

for any w ∈W.

A complete semiring can be augmented with the unary closure operator ∗, defined

by w∗ =
∞⊕

i=0

wi for any w ∈ W, where w0 = 1 and wn+1 = wn
· w. Unless otherwise

noted, henceforth semirings are presumed to be commutative and complete. We refer

to a semiring by its carrier setW. Some common commutative and complete semirings,

are the:

• Boolean semiring: ({0, 1},∨,∧, 0, 1)
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• probability semiring: (R+ ∪ {+∞},+, ·, 0, 1)

• tropical semiring: (R ∪ {−∞,+∞},min,+,+∞, 0)

In the Boolean semiring, 0∗ = 1∗ = 1. In the tropical semiring, w∗ = 0 for w ∈ R+ and

w∗ = −∞ otherwise. In the probability semiring, w∗ = 1
1−w for 0 ≤ w < 1 and w∗ = +∞

otherwise. Further material on semirings may be found in [35, 57, 52].

Example 2.1.2 In the probability semiring, 0.3 + 0.5 = 0.8 and 0.3 · 0.5 = 0.15. In the

tropical semiring, 0.3 + 0.5 = 0.3 and 0.3 · 0.5 = 0.8. In the Boolean semiring, 0 + 1 = 1

and 0 · 1 = 0.

2.1.3 Tree series and weighted tree transformations

A tree series over Σ andW is a mapping L : TΣ →W. For t ∈ TΣ, the element L(t) ∈W

is called the coefficient of t. The support of a tree series L is the set supp(L) ⊆ TΣ

where t ∈ supp(L) iff L(t) is nonzero. A weighted tree transformation over Σ, ∆, and

W is a mapping τ : TΣ × T∆ → W. The inverse of a weighted tree transformation

τ : TΣ × T∆ → W is the weighted tree transformation τ−1 : T∆ × TΣ → W where, for

every t ∈ TΣ and s ∈ T∆, τ−1(s, t) = τ(t, s). The domain of a weighted tree transforma-

tion τ : TΣ × T∆ → W is the tree series dom(τ) : TΣ → W where, for every t ∈ TΣ,

dom(τ)(t) =
⊕

s∈T∆
τ(t, s). The range of τ is the tree series range(τ) : T∆ →W where, for

every s ∈ T∆, range(τ)(s) =
⊕

t∈TΣ
τ(t, s). The identity of a tree series L : TΣ →W is the

weighted tree transformation ıL : TΣ ×TΣ →Wwhere, for every s, t ∈ TΣ, ıL(s, t) = L(s) if

s = t and 0 otherwise. The composition of a weighted tree transformation τ : TΣ×T∆ →W
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(d) range(τ)

Figure 2.2: Non-zero entries of weighted tree transformations and tree series of Example
2.1.3. For each row, the element(s) on the left maps to the value on the right, and all other
elements map to 0.

and a weighted tree transformation µ : T∆×TΓ →W is the weighted tree transformation

τ;µ : TΣ × TΓ →Wwhere for every t ∈ TΣ and u ∈ TΓ, τ;µ(t,u) =
⊕

s∈T∆
τ(t, s) · µ(s,u).

Example 2.1.3 Let Σ be the ranked alphabet defined in Example 2.1.1. Let W be the

probability semiring. Let L : TΣ → W be a tree series such that L(γ(α, α)) = .3,

L(σ(α, β(α), α)) = .5, L(α) = .2 and L(t) = 0 for all other t ∈ TΣ. Then, supp(L) =

{γ(α, α), σ(α, β(α), α), α} and ıL : TΣ × TΣ → W is a weighted tree transformation such

that ıL(γ(α, α), γ(α, α)) = .3, ıL(σ(α, β(α), α), σ(α, β(α), α)) = .5, ıL(α, α) = .2, and ıL(t, s) = 0

for all other (t, s) ∈ TΣ × TΣ.

Let ∆ = {λ(0), ξ(1), ν(2)
} be a ranked alphabet. Let τ : TΣ × T∆→W be a weighted tree

transformation such that τ(γ(α, α), ξ(λ))= .4, τ(γ(α, α), ξ(ξ(λ)))= .6, τ(σ(α, β(α), α), ν(ξ(λ),

λ)) = 1, and τ(t, s) = 0 for all other (t, s) ∈ TΣ × T∆. Then, the non-zero members of the

weighted tree transformation τ−1 : T∆ × TΣ →W and tree series dom(τ) : TΣ →W and

range(τ) : T∆ →W are those presented in Figure 2.2.
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2.1.4 Substitution

Let A and B be sets. Let ϕ : A → TΣ(B) be a mapping. ϕ may be extended to the

mapping ϕ : TΣ(A) → TΣ(B) such that for a ∈ A, ϕ(a) = ϕ(a) and for k ≥ 0, σ ∈ Σ(k),

and t1, . . . , tk ∈ TΣ(A), ϕ(σ(t1, . . . , tk)) = σ(ϕ(t1), . . . , ϕ(tk)). We indicate such extensions by

describing ϕ as a substitution mapping and then abuse notation, conflating, e.g., ϕ and ϕ

both to ϕ where there is no confusion.

Example 2.1.4 Let Σ be the ranked alphabet defined in Example 2.1.1. Let A = {z, y} and

B = {v,w}. Let ϕ : A→ TΣ(B) be a substitution mapping such that ϕ(z) = v and ϕ(y) = w.

Let t = η(γ(α, z), β(y)). Then, ϕ(t) = η(γ(α, v), β(w)).

2.2 Weighted regular tree grammars

In much of the text that follows we refer to previous work, but note that our constructions

are somewhat different. We will cite that work, note differences, and note the implications

of these differences as we come to them. The algorithms we present are intended to be

close to pseudocode and directly implementable; exceptions are noted.

Definition 2.2.1 (cf. Alexandrakis and Bozapalidis [1]) A weighted regular tree gram-

mar (wrtg) over semiringW is a 4-tuple G = (N,Σ,P,n0) where:

1. N is a finite set of nonterminals, with n0 ∈ N the start nonterminal

2. Σ is the input ranked alphabet.

3. P is a tuple (P′, π), where P′ is a finite set of productions, each production p of

the form n −→ u, n ∈ N, u ∈ TΣ(N), and π : P′ → W is a weight function of the
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productions. Within these constraints we may (and usually do) refer to P as a finite

set of weighted productions, each production p of the form n
π(p)
−−−→ u. We denote

subsets of P as follows: Pn = {p ∈ P | p is of the form n −→ u}. We extend all

definitions of operations on trees from Section 2.1.1 to productions such that, e.g.,

size(p) = size(u). We associate P with G, such that, e.g., p ∈ G is interpreted to mean

p ∈ P.

Unlike the definition by Alexandrakis and Bozapalidis [1] we in general allow chain

productions in a wrtg, that is, productions of the form ni
w
−→ n j, where ni,n j ∈ N.

For wrtg G = (N,Σ,P,n0), s, t, u ∈ TΣ(N), n ∈ N, and p ∈ P of the form n w
−→ u ∈ P,

we obtain a derivation step from s to t by replacing some leaf nonterminal in s labeled n

with u. Formally, s ⇒p
G t if there exists some v ∈ pos(s) such that s(v) = n and s[u]v = t.

We say this derivation step is leftmost if, for all v′ ∈ leaves(s) where v′ < v, s(v′) ∈ Σ.

Except where noted and needed, we henceforth assume all derivation steps are leftmost

and drop the subscript G. If, for some m ∈ N, pi ∈ P, and ti ∈ TΣ(N) for all 1 ≤ i ≤ m,

n0 ⇒
p1 t1 . . . ⇒pm tm, we say the sequence d = (p1, . . . , pm) is a derivation of tm in G and

that n0 ⇒
∗ tm. The weight of d is wt(d) = π(p1) · . . . ·π(pm), the product of the weights of all

occurrences of its productions. We may loosen the definition of a derivation and speak of,

for example, a derivation from n using P′, where P′ ⊆ P, or assert that this derivation exists

by saying that n ⇒∗ tm using P′. In such cases one may imagine this to be equivalent to

a derivation in some wrtg G′ = (N,Σ,P′,n).
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The tree series represented by G is denoted LG. For t ∈ TΣ and n ∈ N, the tree series

LG(t)n is defined as follows:

LG(t)n =
⊕

derivation d of t from n in G

wt(d)

.

Then LG(t) = LG(t)n0 . Note that this tree series is well defined, even though this

summation may be infinite (since chain productions are allowed), becauseW is presumed

complete. We call a tree series L recognizable if there is a wrtg G such that LG = L; in

such cases we then call G a wrtg representing LG. Two wrtgs G1 and G2 are equivalent if

LG1 = LG2 .

Example 2.2.2 Figure 2.3 depicts P1 for a wrtg G1 = (N1,Σ,P1,nS) over the probability

semiring with production id numbers. N1 and Σ may be inferred from P1. Note that

production 12 is a chain production. A derivation of the tree S(NP(some students) VP(eat

NP(red meat))) is (1, 2, 7, 5, 8, 11, 13, 15) and the weight of this derivation is .00084.

2.2.1 Normal form

A wrtg G is in normal form if each production p ∈ P is in normal form. A production p of

the form n w
−→ u is in normal form if u has one of the following forms:

1. u ∈ Σ(0)

2. u ∈ N

3. u = σ(n1, . . . ,nk) where k ≥ 1, σ ∈ Σ(k), and n1, . . . ,nk ∈ N.
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1. S

nNP-SUBJ nVP

nS
1
−→

2. NP

nDT nNNS-SUBJ

nNP-SUBJ
.4
−→

3. NP

nNNS-SUBJ

nNP-SUBJ
.6
−→

4. dogsnNNS-SUBJ
.7
−→

5. studentsnNNS-SUBJ
.3
−→

6. thenDT
.8
−→

7. somenDT
.2
−→

8. VP

eat nNP-OBJ

nVP
.7
−→

9. VP

chase nNP-OBJ

nVP
.25
−−→

10. VP

lie

nVP
.05
−−→

11. NP

nJJ nNP-OBJ

nNP-OBJ
.25
−−→

12. nNNS-OBJnNP-OBJ
.75
−−→

13. rednJJ
.4
−→

14. smellynJJ
.6
−→

15. meatnNNS-OBJ
.5
−→

16. carsnNNS-OBJ
.5
−→

Figure 2.3: Production set P1 from example wrtg G1 used in Examples 2.2.2, 2.2.3, 2.2.4,
and 2.2.7.

17. VP

n1 nNP-OBJ

nVP
.7
−→

18. VP

n2 nNP-OBJ

nVP
.25
−−→

19. VP

n3

nVP
.05
−−→

20. eatn1
1
−→

21. chasen2
1
−→

22. lien3
1
−→

Figure 2.4: Normal-form productions inserted in P1 to replace productions 8, 9, and 10
of Figure 2.3 in normalization of G1, as described in Example 2.2.3.
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23. meatnNP-OBJ
.375
−−−→ 24. carsnNP-OBJ

.375
−−−→

Figure 2.5: Productions inserted in P1 to compensate for the removal of chain production
12 of Figure 2.3 in chain production removal of G1, as described in Example 2.2.4.

For every wrtg G we can form the wrtg G′ such that G and G′ are equivalent and

G′ is in normal form. This is achieved by Algorithm 1, which follows the first half of

the construction in Prop. 1.2 of Alexandrakis and Bozapalidis [1] and preserves chain

productions.

Example 2.2.3 The wrtg G from Example 2.2.2 is not in normal form. Algorithm 1

produces a normal form equivalent by replacing productions 8, 9, and 10 from Figure

2.3 with the productions in Figure 2.4.

Algorithm 1 NORMAL-FORM
1: inputs
2: wrtg Gin = (Nin,Σ,Pin,n0) overW
3: outputs
4: wrtg Gout = (Nout,Σ,Pout,n0) overW in normal form such that LGin = LGout

5: complexity
6: O(size(p̃)|Pin|), where p̃ is the production of largest size in Pin

7: Nout ← Nin

8: Pout ← ∅

9: for all p ∈ Pin do
10: for all p′ ∈ NORMALIZE(p,Nin) do
11: Let p′ be of the form n w

−→ u.
12: Pout ← Pout ∪ {p′}
13: Nout ← Nout ∪ {n}
14: return Gout
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Algorithm 2 NORMALIZE
1: inputs
2: production pin of the form n w

−→ u
3: nonterminal set N
4: outputs
5: P = {p1, . . . , pn}, the set of productions in normal form such that n ⇒p1 . . . ⇒pn u

and wt(p1, . . . , pn) = w
6: complexity
7: O(size(pin))

8: P← ∅;Ψ← {pin}

9: whileΨ , ∅ do
10: p←any element ofΨ
11: Ψ← Ψ \ {p}
12: Let p be of the form n w

−→ u.
13: if u ∈ Σ(0) or u ∈ N then {already in normal form}
14: P← P ∪ {p}
15: else
16: Let u be of the form σ(u1, . . . ,uk).
17: (n1, . . . ,nk)← (u1, . . . ,uk)
18: for i = 1 to k do
19: if ui < N then
20: ni ← new nonterminal nx

21: Ψ← Ψ ∪ {nx
1
−→ ui}

22: P← P ∪ {n w
−→ σ(n1, . . . ,nk)}

23: return P
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2.2.2 Chain production removal

Although we have defined algorithms that take chain productions into account, it is

nevertheless sometimes useful, as in the string case [101], to remove chain productions2

from a wrtg. Although chain productions are very helpful in the design of grammars and

may be produced by NLP systems, they delay computation and their presence in a wrtg

can make certain algorithms cumbersome. Fortunately, removing chain productions in

a wrtg is conceptually equivalent to removing them in a weighted finite-state (string)

automaton. Chain production removal for weighted string automata was described in

Theorem 3.2 of Ésik and Kuich [41], Theorem 3.2 of Kuich [81], and by Mohri [101].

Algorithm 3 reproduces the chain production removal algorithm described by Mohri

[101] but does so in the terminology of wrtgs.

Example 2.2.4 The wrtg G1 from Example 2.2.2 has chain productions, specifically pro-

duction 12. Algorithm 3 produces an equivalent wrtg without chain productions by

removing production 12 (making productions 15 and 16 no longer useful) and adding

the productions in Figure 2.5.

Because Example 2.2.4 does not make significant use of Algorithm 4, we provide a

more complicated example of chain production removal.

Example 2.2.5 Consider the wrtg G2 = ({q, r, s},Σ,P2, q) where Σ is defined in Example

2.1.1 and P2 is depicted in Figure 2.6a. Algorithm 4 operates on the chain productions

to form the map represented in Table 2.6b. This map is then used by Algorithm 3 to

produce wrtg G3 = ({q, r, s},Σ,P3, q) where P3 is depicted in Figure 2.6c.

2For finite-state (string) automata chain productions are often called epsilon transitions.
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1. γ

q s

q .1
−→

2. αq .4
−→

3. rq .2
−→

4. sq .3
−→

5. αr .8
−→

6. qr .05
−−→

7. sr .15
−−→

8. αs .9
−→

9. ss .1
−→

(a) Production set P2 from example
wrtg G2 used in Example 2.2.5 to
demonstrate chain production cycle re-
moval.

q r s
q 1.01 .20 .370
r .05 1.01 .185
s 0 0 1.1

(b) Closure table for chain pro-
duction removal of G2. Rows
and columns list source and
destination nonterminals, re-
spectively.

1. γ

q s

q .10
−−→ 2. αq .89

−−→

3. αs 1
−→

(c) Production set P3, obtained by chain produc-
tion removal of G2.

Figure 2.6: Illustration of Algorithms 3 and 4, as described in Example 2.2.5. Algorithm
4 builds the table in Figure 2.6b from the productions in Figure 2.6a and then Algorithm
3 uses this table to generate the productions in Figure 2.6c.

2.2.3 Determinization

A normal-form wrtg G = (N,Σ,P,n0) overW is deterministic if, for each k ∈ N, σ ∈ Σ(k),

and n1, . . . ,nk ∈ Nk there is at most one production of the form n w
−→ σ(n1, . . . ,nk) in P,

where n1, . . . ,nk ∈ N.3 Non-deterministic and deterministic wrtg over the Boolean semir-

ing (which we sometimes refer to as rtg, as they are equivalent to unweighted regular tree

grammars) represent the same tree series ([33], Thm. 1.10); thus we may define an algo-

rithm which takes an arbitrary rtg in normal form and produces a language-equivalent

deterministic one. The naive algorithm generalizes the classical determinization algo-

rithm for fsas [112]; for each word ~ρ = ρ1ρ2 . . . ρk in (P(N))k and σ ∈ Σ(k), find all m

3Thus we are describing a wrtg equivalent to a bottom-up deterministic weighted tree automaton. We
do not consider top-down deterministic properties, as top-down deterministic tree automata are strictly
weaker than their bottom-up counterparts ([48], Ex. II.2.11).
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Algorithm 3 CHAIN-PRODUCTION-REMOVAL
1: inputs
2: wrtg Gin = (N,Σ,Pin,n0) overW
3: outputs
4: wrtg Gout = (N,Σ,Pout,n0) overW such that LGin = LGout . Additionally, no p ∈ Pout is

of the form nsrc
w
−→ ndst, where nsrc and ndst ∈ N.

5: complexity
6: O(|N|3 + |N||Pin|)

7: Pchain ← {n
w
−→ u ∈ Pin | u ∈ N}

8: Form a mapping φ : N ×N→W.
9: φ← COMPUTE-CLOSURE(N,Pchain)

10: Form a mapping θ : N × TΣ(N)→W.
11: Pchain ← Pin \ Pchain

12: for all ndst ∈ N do
13: for all nsrc ∈ N do
14: for all ndst

w
−→ u ∈ Pchain do

15: θ(nsrc,u)← θ(nsrc,u) + (w · φ(nsrc,ndst))

16: Pout ← {n
θ(n,u)
−−−−→ u | θ(n,u) , 0}

17: return Gout

Algorithm 4 COMPUTE-CLOSURE
1: inputs
2: nonterminals N
3: production set P, where each p ∈ P is of the form nsrc

w
−→ ndst, nsrc and ndst ∈ N

4: outputs
5: mappingφ : N×N→W such thatφ(nsrc,ndst) is the sum of weights of all derivations

from nsrc to ndst using P.
6: complexity
7: O(|N|3)

8: φ(nsrc,ndst)← 0 for each nsrc,ndst ∈ N
9: for all nsrc

w
−→ ndst ∈ P do

10: φ(nsrc,ndst)← φ(nsrc,ndst) + w
11: for all nmid ∈ N do
12: for all nsrc ∈ N, nsrc , nmid do
13: for all ndst ∈ N, ndst , nmid do
14: φ(nsrc,ndst)← φ(nsrc,ndst) + (φ(nsrc,nmid) · φ(nmid,nmid)∗ · φ(nmid,ndst))
15: for all nsrc ∈ N, nsrc , nmid do
16: φ(nmid,nsrc)← φ(nmid,nmid)∗ · φ(nmid,nsrc)
17: φ(nsrc,nmid)← φ(nsrc,nmid) · φ(nmid,nmid)∗

18: φ(nmid,nmid)← φ(nmid,nmid)∗

19: return φ
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Algorithm 5 DETERMINIZE
1: inputs
2: wrtg Gin = (N,Σ,Pin,n0) over Boolean semiring in normal form with no chain

productions
3: outputs
4: deterministic wrtg Gout = (P(N)∪ {n0},Σ,Pout,n0) over Boolean semiring in normal

form such that LGin = LGout .
5: complexity
6: O(|Pin|2|N|

maxσ∈Σ rk(σ)
)

7: Pout ← ∅

8: Ξ← ∅ {Seen nonterminals}
9: Ψ← ∅ {New nonterminals}

10: for all α ∈ Σ(0) do
11: ρdst ← {n | n −→ α ∈ Pin}

12: Ψ← Ψ ∪ {ρdst}

13: Pout ← Pout ∪ {ρdst −→ α}
14: if n0 ∈ ρdst then
15: Pout ← Pout ∪ {n0 −→ ρdst}

16: whileΨ , ∅ do
17: ρnew ← any element ofΨ
18: Ξ← Ξ ∪ {ρnew}

19: Ψ← Ψ \ {ρnew}

20: for all σ(k)
∈ Σ \ Σ(0) do

21: for all ~ρ = ρ1 . . . ρk | ρ1 . . . ρk ∈ Ξ
k, ρi = ρnew for some 1 ≤ i ≤ k do

22: ρdst ← {n | n −→ σ(n1, . . . ,nk) ∈ Pin,n1 ∈ ρ1, . . . ,nk ∈ ρk}

23: if ρdst , ∅ then
24: if ρdst < Ξ then
25: Ψ← Ψ ∪ {ρdst}

26: Pout ← Pout ∪ {ρdst −→ σ(~ρ)}
27: if n0 ∈ ρdst then
28: Pout ← Pout ∪ {n0 −→ ρdst}

29: return Gout

38



1. D

q r

t −→

2. D

q s

t −→

3. Aq −→

4. Br −→

5. Bs −→

6. Cs −→
(a) P4, productions of non-
deterministic rtg G4.

1. {t}t −→

2. D

{q} {r, s}

{t} −→

3. D

{q} {s}

{t} −→

4. A{q} −→

5. B{r, s} −→

6. C{s} −→

(b) P5, productions of deterministic rtg G5 ob-
tained by applying Algorithm 5 to G4.

Figure 2.7: rtg productions before and after determinization, as described in Example
2.2.6. Note that (a) is not deterministic because productions 4 and 5 have the same right
side, while no productions in (b) have the same right side.

productions p1, . . . , pm where, for 1 ≤ j ≤ m, p j = n j −→ σ(n j1 , . . . ,n jk) such that for

1 ≤ i ≤ k, n ji ∈ ρi. Then, {n j | 1 ≤ j ≤ m} −→ σ(ρ1, . . . , ρk) is in the determinized rtg.

Additionally, if n j = n0 for some 1 ≤ j ≤ m, n0 −→ {n j | 1 ≤ j ≤ m} is in the determinized

rtg. This is frequently overexhaustive, though. Algorithm 5 is more appropriate for

actual implementation, as it only bothers to build productions for nonterminals that can

be reached. This algorithm first creates the nonterminals used to produce leaves in lines

10–15, then uses those nonterminals to produce more nonterminals in lines 20–26. until

no more can be produced. To ensure a single start nonterminal, chain productions are

added from a new unique start nonterminal in lines 15 and 28.

Example 2.2.6 Consider the rtg G4 = (N4, Σ, P4, t) where N4 = {t, q, r, s}, Σ = {A(0), B(0),

C(0), D(2)
}, and P4 is depicted in Figure 2.7a. The result of Algorithm 5 on input G4 is G5

= (P(N4), Σ, P5, t), where P5 is depicted in Figure 2.7b.

We discuss our contribution to algorithms for determinization of a wider class of

wrtg in Chapter 3.
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2.2.4 Intersection

Algorithm 6 INTERSECT
1: inputs
2: wrtg GA = (NA,Σ,PA,nA0) overW in normal form with no chain productions
3: wrtg GB = (NB,Σ,PB,nB0) overW in normal form with no chain productions
4: outputs
5: wrtg GC = ((NA × NB),Σ,PC, (nA0 ,nB0)) over W such that for every t ∈ TΣ,

LGC(t) = LGA(t) · LGB(t)
6: complexity
7: O(|PA||PB|)

8: PC ← ∅

9: for all (nA,nB) ∈ NA ×NB do
10: for all σ(k)

∈ Σ do
11: for all pA of the form nA

wA
−−→ σ(nA1 , . . . ,nAk) ∈ PA do

12: for all pB of the form nB
wB
−−→ σ(nB1 , . . . ,nBk) ∈ PB do

13: PC ← PC ∪ (nA,nB)
wA · wB
−−−−−→ σ((nA1 ,nB1), . . . , (nAk ,nBk))

14: return GC

It is frequently useful to find the weighted intersection between two tree series LA

and LB. This intersection is of course also a tree series LC where for every t ∈ TΣ,

LC(t) = LA(t) · LB(t). For the case of recognizable tree series, if we consider two chain

production-free, normal-form wrtgs GA and GB representing these tree series, then we

would like to find a third wrtg GC such that LGC(t) = LGA(t) · LGB(t). Algorithm 6 is a

very simple algorithm that finds this intersection wrtg.4 Note that in practice, rather

than iterating over all members of NA ×NB as the algorithm specifies at line 9, an actual

implementation should begin by considering (nA0 ,nB0), and then proceed by considering

nonterminals that appear in the right sides of newly generated productions as they are

discovered, at line 13. We have omitted this detail from the presentation of the algorithm

4This algorithm is derived from a composition of identity transducers; see Section 2.3.3.
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1. S

NP

the dogs

nVP

nS
1
−→ 2. VP

eat NP

smelly meat

nVP
.6
−→ 3. VP

chase NP

red cars

nVP
.4
−→

(a) P6, productions for the wrtg G6 used in Example 2.2.7.

1. S

n1 n2

n0
1
−→

2. NP

n3 n4

n1
.4
−→

3. then3
.8
−→

4. dogsn4
.7
−→

5. VP

n5 n8

n2
.42
−−→

6. VP

n7 n6

n2
.1
−→

7. eatn5
1
−→

8. chasen7
1
−→

9. NP

n9 n10

n6
.25
−−→

10. NP

n11 n12

n8
.25
−−→

11. redn9
.4
−→

12. smellyn11
.6
−→

13. meatn12
.5
−→

14. carsn10
.5
−→

(b) P7, productions for the result of intersecting normal-form, chain-production free transformations of
Figures 2.3 and 2.8a.

Figure 2.8: Productions for a wrtg and intersection result, as described in Example 2.2.7.

for clarity’s sake and will continue to do so throughout the remainder of this work, but

will indicate when such an optimization is appropriate in running text.

Example 2.2.7 Consider the wrtg G1 = (N1,Σ,P1,nS) described in Example 2.2.2 with

P1 depicted in Figure 2.3 and the wrtg G6 = ({nS,nVP},Σ,P6,nS), with P6 depicted in

Figure 2.8a. Normal form and chain production removal of G1 is described in Ex-

amples 2.2.3 and 2.2.4; similar transformations of G6 are left as an exercise. The re-

sult of intersecting these transformed wrtgs (after nonterminals have been renamed) is

G7 = ({ni | 0 ≤ i ≤ 12},Σ,P7,n0), where P7 is depicted in Figure 2.8b.

41



2.2.5 K-best

Algorithms for determining the k highest weighted paths in a hypergraph have been

described by Huang and Chiang [59] and Pauls and Klein [108] and are easily adaptable

to the wrtg domain. We refer the reader to those works, which contain clearly presented

algorithms.

2.3 Weighted top-down tree transducers

Definition 2.3.1 (cf. Sec. 5.3 of Fülöp and Vogler [45]) A weighted top-down tree trans-

ducer (wtt) is a 5-tuple M = (Q, Σ, ∆, R, q0) where:

1. Q is a finite set of states, with q0 ∈ Q the start state,

2. Σ and ∆ are the input and output ranked alphabets,

3. R is a tuple (R′, π) where R′ is a finite set of rules, each rule r of the form q.σ −→ u

for q ∈ Q, σ ∈ Σ(k), and u ∈ T∆(Q × Xk), and π : R′ → W is a weight function of

the rules. We frequently refer to R as a finite set of weighted rules, each rule r of

the form q.σ
π(r)
−−−→ u. We denote subsets of R as follows: Rq,σ = {r ∈ R | r is of the

form q.σ −→ u}. We extend all definitions of operations on trees from Section 2.1.1 to

rules, such that, e.g., size(r) = size(u). We associate R with M, such that, e.g., r ∈ M

is interpreted to mean r ∈ R.

The multiplicity of a variable xi in a rule r of the form q.σ w
−→ u, denoted mult(r, i), is

the number of times xi appears in u. A wtt is linear if for each rule r of the form q.σ w
−→ u

where σ ∈ Σ(k) and k ≥ 1, maxk
i=1 mult(r, i) = 1. If, for each rule r, mink

i=1 mult(r, i) = 1,
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the wtt is nondeleting. We denote the class of all wtt as wT and add the letters L and

N to signify intersections of the classes of linear and nondeleting wtt, respectively. We

also remove the letter “w” to signify those wtt over the Boolean semiring. For example,

wNT is the class of nondeleting wtt over arbitrary semiring, and LNT is the class of

nondeleting and linear wtt over the Boolean semiring. We use class names as a generic

descriptor of individual wtts. For example, the phrase “a wLT M” means “a wtt M of

class wLT.” We also define the following properties of wtt used in special circumstances

(and not part of the “core”): a wtt is deterministic if, for each q ∈ Q and σ ∈ Σ there is at

most one rule of the form q.σ w
−→ u; it is total if there is at least one such rule. It is height-1

if each rule is of the form q.σ w
−→ δ(d1, . . . , dk) where δ ∈ ∆(k) and di ∈ Q × X for 1 ≤ i ≤ k.

For wtt M = (Q,Σ,∆,R, q0), s, t ∈ T∆(Q × TΣ), q ∈ Q, and r ∈ R of the form q.σ w
−→ u,

we obtain a derivation step from s to t by replacing some leaf of s labeled with q and a

tree beginning with σ by a transformation of the right side of r, where each instance of

a variable has been replaced by a corresponding child of the σ-headed tree. Formally,

s ⇒r
M t if there exists some v ∈ pos(s) such that s(v) = (q, σ(s1, . . . , sk)) and s[ϕ(u)]v = t,

where ϕ is a substitution mapping Q × X→ T∆(Q × TΣ), such that ϕ((q′, xi)) = (q′, si) for

all q′ ∈ Q, 1 ≤ i ≤ k. We say this derivation step is leftmost if, for all v′ ∈ leaves(s) where

v′ < v, s(v′) ∈ ∆. Except where noted and needed, we henceforth assume all derivation

steps are leftmost and drop the subscript M. If, for some q ∈ Q, s ∈ TΣ, m ∈N, ri ∈ R, and

ti ∈ T∆(Q × TΣ) for all 1 ≤ i ≤ m, (q, s) ⇒r1 t1 . . . ⇒rm tm, we say the sequence (r1, . . . , rm)

is a derivation of (s, tm) in M from q. The weight of a derivation d, wt(d), is the product of

the weights of all occurrences of its rules.
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1. α λ
.6
−→q

2. α ξ

λ

.4
−→q

3. β ν

q.x1 ξ

q.x1

.7
−→q

4. γ ν

q.x2 q.x1

.3
−→q

5. η ν

q.x1 q.x2

.9
−→q

6. σ ν

q.x2 ν

q.x1 q.x3

.2
−→q

(a) R1: total wNT

1. σ ν

λ ν

q.x1 r.x1

−→q 2. α ξ

λ

−→q 3. γ λ−→r

4. α λ−→r
(b) R2: deterministic T

1. γ ν

q.x1 q.x2

2
−→q 2. γ ν

q.x2 q.x1

4
−→q 3. α λ

3
−→q

(c) R3: height-1 wLNT

Figure 2.9: Rule sets for three wtts.
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The weighted tree transformation represented by M is the mapping τM : TΣ × T∆ ×

Q→W defined, for all s ∈ TΣ, t ∈ T∆, and q ∈ Q, as follows:

τM(s, t)q =
⊕

derivation d of (s,t) in M from q

wt(d).

If q = q0, we may leave off “from q0” in the definition of a derivation and use τM(s, t)

as shorthand for τM(s, t)q0 .

Example 2.3.2 Let Σ and ∆ be the ranked alphabets defined in Examples 2.1.1 and 2.1.3.

For reference, Σ = {α(0), β(1), γ(2), η(2), σ(3)
} and ∆ = {λ(0), ξ(1), ν(2)

}. Let M1 = ({q}, Σ, ∆, R1,

q), M2 = ({q, r},Σ,∆, R2, q), and M3 = ({q},Σ,∆, R3, q) be wtts, with R1, R2, and R3 depicted

in Figures 2.9a, 2.9b, and 2.9c, respectively. M1 is a total wNT, M2 is a deterministic T,

and M3 is a height-1 wLNT. The sequence (3, 1, 2) is a derivation of (β(α), ν(λ, ξ(ξ(λ)))) in

M1 and if M1 is taken to be over the probability semiring, the weight of the derivation is

.168. The value of τM3(γ(α, α), ν(λ, λ)) is 8 if M3 is taken to be over the tropical semiring,

but is 54 if taken over the probability semiring.

We now define weighted extended top-down tree transducers [56], a generalization

of wtt where the left-hand side may contain an arbitrary pattern. This formalism is

frequently more useful than ”traditional” wtt in NLP applications as it captures at least

the same set of weighted tree transformations as the commonly used synchronous tree

substitution grammars [90, 119].5 We can immediately see problems with wtt before

even considering real-world applications. Consider that there is no wtt that captures the

(finite!) transformation depicted in Figure 2.2a.
5In fact, xLNT (which are defined further down the page) have precisely the same power as STSG , if

STSG are given states [90].
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Definition 2.3.3 (cf. Def. 1 of Maletti [90]) A weighted extended top-down tree trans-

ducer (wxtt) is a 5-tuple M = (Q,Σ,∆,R, q0) where:

1. Q,Σ, and ∆ are defined as for wtt.

2. R is a tuple (R′, π). R′ is a finite set of rules, each rule r of the form q.y w
−→ u for

q ∈ Q, y ∈ TΣ(X), and u ∈ T∆(Q×X). We further require that y is linear in X, i.e., no

variable x ∈ X appears more than once in y, and that each variable appearing in u

is also in y. π : R′ → W is a weight function of the rules. As for wrtgs and wtts,

we refer to R as a finite set of weighted rules, each rule r of the form q.y
π(r)
−−−→ u.

For wxtt M = (Q,Σ,∆,R, q0), s, t ∈ T∆(Q × TΣ), q ∈ Q, and r ∈ R of the form q.y w
−→ u,

we obtain a derivation step from s to t by replacing some leaf of s labeled with q and a

tree matching y, by a transformation of u, where each instance of a variable has been

replaced by a corresponding subtree of the y-matching tree. Formally, s⇒r
M t if there is a

position v ∈ pos(s), a substitution mapping ϕ : X→ TΣ, and a rule q.y w
−→ u ∈ R such that

s(v) = (q, ϕ(y)) and t = s[ϕ′(u)]v, where ϕ′ is a substitution mapping Q×X→ T∆(Q×TΣ)

defined such that ϕ′(q′, x) = (q′, ϕ(x)) for all q′ ∈ Q and x ∈ X. We define leftmost, deriva-

tion, and wt for wxtt as we do for wtt. We also define the weighted tree transformation

τM(s, t)q for all s ∈ TΣ, t ∈ T∆, and q ∈ Q as we do for wtt, but additionally note that the

assumption thatW is complete ensures weighted tree transformation is well defined for

wxtt, even though the summation of derivations may be infinite due to “chain” rules

such as q.x w
−→ q.x.

We extend the properties linear and nondeleting to wxtt. We use the letter “x” to denote

classes of wxtt and thus incorporate them into our class naming convention. Thus, xLT
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is the class of linear wxtt over the Boolean semiring, and wxLNT is the class of linear

and nondeleting wxtt over an arbitrary semiring. A wxtt is ε-free if there is no rule

q.x w
−→ u ∈ R where x ∈ X.

Example 2.3.4 M1, M2, and M3 from Example 2.3.2 are wtts, so they are also wxtts.

However, the form of their rules when presented as wxtts is slightly different; Figure

2.10a demonstrates this for M1 and similar “transformations” for M2 and M3 should be

fairly obvious. M4 = ({q1, q2, q3}, Σ, ∆,R4, q1), where R4 is depicted in Figure 2.10b, is a

wxLNT over the probability semiring that recognizes τ from Figure 2.2a.

When certain properties apply to every weighted tree transformation represented by

some class of wtt, we elevate those properties to the class itself. For example, we can say

that T has recognizable domain, because all weighted tree transformations represented

by a wtt of class T have recognizable domain ([48], cor. IV.3.17). We now discuss some

algorithms on wtts and wxtts.

2.3.1 Projection

The projection of a transducer M is the construction of a syntactic structure that represents

either dom(τM) (called the domain projection) or range(τM) (the range projection). Since

the only syntactic structures under discussion here capture recognizable tree series,

projection is only possible once recognizability is ensured. As we just mentioned, T

has recognizable domain ([48], cor. IV.3.17). Algorithm 7 is a “folklore” algorithm that

obtains the domain projection from a wtt of class T. As in the case of Algorithm 6, an
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1. α λ
.6
−→q

2. α ξ

λ

.4
−→q

3. β

x1

ν

q.x1 ξ

q.x1

.7
−→q

4. γ

x1 x2

ν

q.x2 q.x1

.3
−→q

5. η

x1 x2

ν

q.x1 q.x2

.9
−→q

6. σ

x1 x2 x3

ν

q.x2 ν

q.x1 q.x3

.2
−→q

(a) Recasting of R1 from Figure 2.9a as wxtt rules.

1. γ

α x1

ξ

q2.x1

.4
−→q1

2. γ

α x1

ξ

ξ

q2.x1

.6
−→q1

3. σ

x1 x2 α

ν

q3.x2 q2.x1

1
−→q1

4. α λ
1
−→q2

5. β

x1

ξ

q2.x1

1
−→q3

(b) R4, for representing τ from Figure 2.2a.

Figure 2.10: Rule sets for wxtts presented in Example 2.3.4.
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implementation of this algorithm should consider nonterminals as they are encountered,

and not iterate over all possible nonterminals.

wNT does not have recognizable domain [91], but wLT does [43]. A much simpler

algorithm, Algorithm 8, obtains domain projection from a wtt of class wLT. The im-

plementation optimization previously discussed for Algorithms 6 and 7 applies here as

well. The key difference between the algorithms, aside from the preservation of weights,

is that the linearity constraint for Algorithm 8 does not require the “merging” of rules

done in lines 17–22 of Algorithm 7.

Algorithm 7 BOOL-DOM-PROJ
1: inputs
2: wtt M = (Q, Σ, ∆, R, q0) over Boolean semiring
3: outputs
4: wrtg G = (N, Σ, P, n0) over Boolean semiring such that LG = dom(τM)
5: complexity
6: O(( 2|R|

|Q| )
|Q|)

7: N← P(Q)
8: n0 ← {q0}

9: P← ∅
10: for all n ∈ N do
11: if n = ∅ then
12: for all σ ∈ Σwith rank k do

13: P← P ∪ {∅ −→ σ(

k︷  ︸︸  ︷
∅, . . . , ∅)}

14: else
15: n ∈ P(Q) is of the form {q1, . . . , qm} for some m ≤ |Q|.
16: for all σ(k)

∈ Σ do
17: for all (r1, . . . , rm) ∈ Rq1,σ × . . . × Rqm,σ do
18: Let φ be a mapping Xk → N where φ(xi) = ∅ for all 1 ≤ i ≤ k.
19: for i = 1 to m do
20: ri has the form qi.σ −→ t.
21: for all (q′, x) ∈ ydset(t) ∩ (Q × Xk) do
22: φ(x)← φ(x) ∪ {q′}
23: P← P ∪ {n −→ σ(φ(x1), . . . , φ(xk))}
24: return G
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Algorithm 8 LIN-DOM-PROJ
1: inputs
2: wLT M = (Q,Σ,∆,R, q0) overW
3: outputs
4: wrtg G = (Q ∪ {⊥},Σ,P, q0) overW such that LG = dom(τM)
5: complexity
6: O(|R|)

7: P = (P′, π)← (∅, ∅)
8: for all σ(k)

∈ Σ do

9: P′ ← P′ ∪ {⊥ −→ σ(

k︷    ︸︸    ︷
⊥, . . . ,⊥)}

10: π(⊥ −→ σ(

k︷    ︸︸    ︷
⊥, . . . ,⊥))← 1

11: for all q ∈ Q do
12: for all σ ∈ Σwith rank k do
13: for all r ∈ Rq,σ do
14: r has the form q.σ w

−→ u.
15: Let φ be a mapping Xk → Q ∪ {⊥} where φ(xi) = ⊥ for all 1 ≤ i ≤ k.
16: for all (q′, x) ∈ ydset(u) ∩ (Q × Xk) do
17: φ(x)← q′

18: pnew ← q −→ σ(φ(x1), . . . , φ(xk))
19: P′ ← P′ ∪ {pnew}

20: π(pnew)← π(pnew) + w
21: return G
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1. α{q} −→

2. σ

{q, r} ∅ ∅

{q} −→

3. α{q, r} −→

4. σ

∅ ∅ ∅

∅ −→

5. γ

∅ ∅

∅ −→

6. η

∅ ∅

∅ −→

7. β

∅

∅ −→

8. α∅ −→

(a) P7 formed from domain projection of M2 from Example 2.3.2 with rules in Figure 2.9b.

1. γ

q q

q 2
−→ 2. αq 3

−→

(b) P8 formed from domain projection of M3 from Example 2.3.2 with rules in Figure 2.9c.

Figure 2.11: Production sets formed from domain projection using Algorithms 7 and 8,
as described in Example 2.3.5.

Example 2.3.5 We can use Algorithms 7 and 8 to obtain the domain projections of,

respectively, M2 and M3, from Example 2.3.2, where M2 is taken to be over the Boolean

semiring and M3 is taken to be over the tropical semiring. Let G7 and G8 be wrtgs such that

LG7 = dom(M2) and LG8 = dom(M3). G7 = (P({q, r}),Σ,P7, {q}) and G8 = ({q,⊥},Σ,P8, q),

where P7 is in Figure 2.11a and P8 is in Figure 2.11b.

Transducer classes xT and wxLT also have recognizable domain, as the proofs for their

non-extended brethren are not dependent on particulars of the left side, but Algorithms

7 and 8 are not appropriate for these classes. We can, however, transform a wxT into

a wT with equivalent domain using Algorithm 9. This algorithm calls Algorithm 10,

which separates multi-height left sides of rules and preserves state transition information

from the original rules, but discards syntactic rule right side information. If we then

augment Σ(1) with an additional symbol ε with the understanding that Rq,ε signifies ε
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rules beginning with q, and that q.ε w
−→ u is equivalent to q.x1

w
−→ u, we may use Algorithms

7 and 8 on wxtts transformed from Algorithm 9 to obtain domain projections.

Algorithm 9 PRE-DOM-PROJ
1: inputs
2: wxtt Min = (Qin, Σ, ∆, Rin, q0) over W, where l = maxσ∈Σ rk(σ) and m =

maxr∈Rin maxl
i=1 mult(r, i).

3: outputs
4: wtt Mout = (Qout ⊇ Qin,Σ,Γ,Rout, q0) overW, where Γ = {υ(0), ω(lm)

}, such that if Min

is linear orW is Boolean, dom(τMin) = dom(τMout)
5: complexity
6: O(|Rin|)

7: Qout ← Qin

8: Rout ← ∅

9: for all r ∈ Rin do
10: r is of the form q.y w

−→ u
11: for all r′ ∈ PRE-DOM-PROJ-PROCESS(Σ,∆,Qout, lm, υ, ω, q, y,u,w) do

12: r′ is of the form q′.σ w′
−→ u′.

13: Rout ← Rout ∪ {r′}
14: Qout ← Qout ∪ {q′}
15: return Mout

Example 2.3.6 Recall M4 from Example 2.3.4. The result of Algorithm 9 on M4 is M5 =

(Q5 = {qi | 1 ≤ i ≤ 6}, Σ, Γ, R5, q1), where Γ = {υ(0), ω(3)
}, and R5 is depicted in Figure 2.12a.

The result of Algorithm 8 on M5 is G9 = (Q5, Σ, P9, q1), where P9 is depicted in Figure

2.12b. Note that LG9 is depicted in Figure 2.2c.

Transducer classes xLT (from [48], Thm. IV.6.5) and wxLNT (from [43]) have regular

range. Algorithm 11 describes how to obtain range projections from wxtts of these

classes. Note that the algorithm is defined for wxLT but is only applicable to xLT and

wxLNT; should the input be, for example, in wxLT over some non-Boolean semiring
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Algorithm 10 PRE-DOM-PROJ-PROCESS
1: inputs
2: ranked alphabets Σ, ∆
3: state set Q
4: maximum new right side rank r ∈N
5: rank-0 symbol υ
6: rank-r symbol ω
7: state q ∈ Q
8: tree y ∈ TΣ(X)
9: tree u ∈ T∆∪{χ}(Q × X) where χ is a rank-0 “placeholder” symbol not in Σ or ∆

10: weight w
11: outputs
12: set of rules R′ and states Q′ ⊇ Q such that for any wxtt

M = (Q,Σ,∆ ∪ {υ,ω},R ∪ {q.y w
−→ u}, q0), dom(τM) = dom(τM′), where

M′ = (Q ∪Q′,Σ,∆ ∪ {υ,ω},R ∪ R′, q0)
13: complexity
14: O(size(y))

15: R′ ← ∅
16: Q′ ← ∅
17: Ψ← ∅
18: Let b1 = . . . = br = υ
19: m← 1
20: Let y be of the form σ(k)(y1, . . . , yk).
21: Form substitution map ϕ : Q × X→ T∆∪{χ}(Q × X).
22: for i = 1 to k do
23: if yi ∈ X then
24: for all (qi, yi) ∈ ydset(u) ∩ (Q × {yi}) do
25: ϕ(qi, yi)← χ
26: bm ← (qi, xm)
27: m← m + 1
28: else
29: Let qx be a new state such that Q ∩ {qx} = ∅.
30: Q′ ← Q′ ∪ {qx}

31: Ψ← Ψ ∪ {(qx, yi)}
32: bm ← (qx, xm)
33: m← m + 1
34: for all (qx, yx) ∈ Ψ do
35: R′,Q′ ← R′,Q′ ∪ PRE-DOM-PROJ-PROCESS(Σ,∆,Q, r, υ, ω, qx, yx, ϕ(u), 1)
36: R′ ← R′ ∪ {q.σ w

−→ ω(b1, . . . , br)}
37: return R′, Q′
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1. γ ω

q4.x1 q2.x2 υ

.4
−→q1

2. γ ω

q5.x1 q2.x2 υ

.6
−→q1

3. σ ω

q2.x1 q3.x2 q6.x3

1
−→q1

4. α ω

υ υ υ

1
−→q2

5. β ω

q2.x1 υ υ

1
−→q3

6. α ω

υ υ υ

1
−→q4

7. α ω

υ υ υ

1
−→q5

8. α ω

υ υ υ

1
−→q6

(a) Rule set R5 formed as the result of pre-domain conversion of M4, Algorithm 9, as described in
Example 2.3.6.

1. γ

q4 q2

q1
.4
−→ 2. γ

q5 q2

q1
.6
−→

3.

σ

q2 q3 q6

q1
1
−→

4. αq2
1
−→

5. β

q2

q3
1
−→ 6. αq4

1
−→ 7. αq5

1
−→ 8. αq6

1
−→

(b) Production set P9, formed as the result of domain projection, Algorithm 8, on M5, which has rules
depicted in Figure 2.12a, as described in Example 2.3.6.

1. ξ

q2

q1
.4
−→ 2. ξ

ξ

q2

q1
.6
−→ 3. ν

q3 q2

q1
1
−→

4. λq2
1
−→

5. ξ

q2

q3
1
−→

(c) Production set P10, formed as the result of range projection, Algorithm 11, on M4, as described in
Example 2.3.7.

Figure 2.12: Transformations of M4 from Example 2.3.4, depicted in Figure 2.10b, for use
in domain and range projection Examples 2.3.6 and 2.3.7.
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the result of the algorithm is not guaranteed to be meaningful. More specifically, the

coefficients of the represented tree series may be wrong.

Algorithm 11 RANGE-PROJ
1: inputs
2: wxLT M = (Q,Σ,∆,R, q0) over semiringW.
3: outputs
4: wrtg G = (Q,∆,P, q0) over semiring W such that, if M is nondeleting or W is

Boolean, LG = range(τM)
5: complexity
6: O(|R|maxr∈R size(r))

7: P = (P′, π)← (∅, ∅)
8: Let ϕ be a substitution mapping Q × X → T∆(Q) such that for all q ∈ Q and x ∈ X,
ϕ((q, x)) = q.

9: for all r of the form q.y w
−→ z in R do

10: pnew ← q −→ ϕ(z)
11: P′ ← P′ ∪ {pnew}

12: π(pnew)← π(pnew) + w
13: return G

Example 2.3.7 Recall M4 = (Q4,Σ,∆,R4, q1) from Example 2.3.4. The result of Algorithm

11 on M4 is G10 = (Q4,∆,P10, q1), where P10 is depicted in Figure 2.12c. Note that LG10 is

depicted in Figure 2.2d.

2.3.2 Embedding

It is sometimes useful to embed a wrtg in a wtt, that is, given a wrtg G, to form a wtt M

such that τM = ıLG . Algorithm 12 is a very simple algorithm for forming this embedding

from a normal form and chain-production-free wrtg; this can be done with an arbitrary

wrtg in an analogous manner to that of the algorithm, but the resulting embedding will

be a wxtt.
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Algorithm 12 EMBED
1: inputs
2: wrtg G = (N,Σ,P,n0) overW in normal form with no chain productions
3: outputs
4: wtt M = (N,Σ,Σ,R,n0) overW such that τM = ıLG

5: complexity
6: O(|P|)

7: for all p of the form n w
−→ σ(n1, . . . ,nk) ∈ P do

8: R← R ∪ {n.σ w
−→ σ(n1.x1, . . . ,nk.xk)}

9: return M

1. S S

n1.x1 n2.x2

1
−→n0

2. NP NP

n3.x1 n4.x2

.4
−→n1

3. the the.8
−→n3

4. dogs dogs.7
−→n4

5. VP VP

n5.x1 n6.x2

.42
−−→n2

6. VP VP

n7.x1 n8.x2

.1
−→n2

7. eat eat1
−→n5

8. chase chase1
−→n7

9. NP NP

n9.x1 n10.x2

.25
−−→n6

10. NP NP

n11.x1 n12.x2

.25
−−→n8

11. red red.4
−→n9

12. smelly smelly.6
−→n11

13. meat meat.5
−→n12

14. cars cars.5
−→n10

Figure 2.13: Rule set R6, formed from embedding of wrtg G7 from Example 2.2.7, as
described in Example 2.3.8.
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Example 2.3.8 Recall the wrtg G7 = ({ni | 0 ≤ i ≤ 12},Σ,P7,n0), where P7 is depicted in

Figure 2.8b. Then M6 = ({ni | 0 ≤ i ≤ 12},Σ,Σ,R6,n0), where R6 is depicted in Figure 2.13,

is the result of Algorithm 12, an embedding of G7.

2.3.3 Composition

In Section 2.1.3 we described the composition of two weighted tree transformations τ

and µ. Here we consider composition of transducers (sometimes referred to as syntactic

composition). In other words, given two wtts MA and MB, we want to construct a wtt

MA ◦MB such that τMA◦MB = τMA ; τMB .

A construction was given in declarative terms for syntactic composition of two un-

weighted top-down tree transducers MA and MB by Baker [6]. This construction was

shown to be correct for the cases where (MB is linear or MA is deterministic) and (MB

is nondeleting or MA is total). The construction was extended to the weighted case by

Maletti [88]. An inspection of Baker’s construction is enough to satisfy that it may be

generalized to allow MA to be a wxtt without altering matters. Note, though, that the de-

terministic and total properties are not defined for wxtt, so any composition construction

that involves a wxT as MA will require a wLNT as MB. We re-state Baker’s construc-

tion, with the additional generalization and modification to handle weights provided by

Maletti, as follows:

Let MA = (QA,Σ,∆,RA, q0A) and MB = (QB,∆,Γ,RB, q0B) be wtts. Then define MC =

((QA ×QB), Σ, Γ, RC, (q0A, q0B)), where members of RC are found by the following process:

1. Augment MB such that it represents transformations from T∆∪(QA×X) to TΓ∪(QA×QB×X)

by adding, for all qA ∈ QA, x ∈ X, and qB ∈ QB, the rule qB.(qA, x) 1
−→ ((qA, qB), x) to RB.
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2. Using the augmented MB, for all rules qA.y
w1
−−→ u in RA, all states qB in QB, and all z

such that τMB(u, z)qB is non-zero, add the rule (qA, qB).y
w1 · τMB (u, z)qB
−−−−−−−−−−−→ z to RC.

3. If RC contains rules that only differ by their weight, replace these rules with a single

rule that has as a weight the sum of the weights of the replaced rules.

This process, essentially a reformulation of the construction of Baker [6], succinctly

and intuitively describes how the composition is constructed. However, as discussed in

Section 1.7, this text does not provide an actual, implementable algorithm for obtaining

the composition transducer. For one, the first step requires adding an infinite number of

rules. This problem is easily solved by only adding such rules as may be necessitated by

the second step. Of more concern is the method by which the second step is performed—

the description above gives no hint as to how one may actually obtain the specified z.

Algorithm 13, COMPOSE, seeks to correct precisely this omission. It is an algorithmic

description of the aforementioned composition construction of weighted tree transduc-

ers. The algorithm takes as input a wxT MA and a wLNT MB and produces a wxtt MC

such that MC = MA ◦MB. As in the declarative presentation, the main algorithm and

general idea is rather similar to composition algorithms for wst. Like in the wst case, for

each state of the composition transducer (i.e., for each pair of states, one from MA and

one from MB), rules from MA and MB are combined.6 The key difference is that while

for strings, one rule from MA is paired with one rule from MB, here multiple rules from

MB may be necessary to match a single rule from MA. Specifically, every tiling of rules

from MB with left sides that “cover” a potentially large right side of a rule from MA must

6As previously discussed for Algorithms 6, 7, and 8, an implementation of this algorithm should consider
states as they are encountered, and not iterate over all possible states.
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be chosen. The restriction that MB not be extended ensures that there are only a finite

number of such tilings (see Arnold and Dauchet [5] for more details).

The act of forming all tilings of a tree by a transducer is handled by the sub-algorithm

COVER, presented as algorithm 14. The input to the algorithm is a tree, u, a transducer,

MB, and a state qB. The desired output is the set of all trees that are formed as a

consequence of tiling u with left hand sides of rules from MB and joining the right hand

sides of those rules in the natural way. Additionally, the product of the weights of

the rules used to form these trees is desired. COVER proceeds in a top-down manner,

finding all rules that match the root of u, and building an incomplete result tree for each

matching rule. Then, for each incomplete result tree, another step down the input tree

is taken, forming more partial results, and so on until all the possible full coverings and

complete result trees are formed. Figure 2.14 graphically explains how COVER works.

Additionally, the following example provides a walkthrough of COMPOSE and COVER.

Algorithm 13 COMPOSE
1: inputs
2: wxT MA = (QA,Σ,∆,RA, qA0) overW
3: wLNT MB = (QB,∆,Γ,RB, qB0) overW
4: outputs
5: wxT MC = ((QA ×QB),Σ,Γ,RC, (qA0 , qB0)) overW such that MC =MA ◦MB.
6: complexity
7: O(|RA|max(|RB|

size(ũ), |QB|)) where ũ is the largest right side tree in any rule in RA

8: Let RC be of the form (R′C, π)
9: RC ← (∅, ∅)

10: for all (qA, qB) ∈ QA ×QB do
11: for all r of the form qA.y

w1
−−→ u in RA do

12: for all (z,w2) | (z, θ,w2) ∈ COVER(u,MB, qB) do
13: rnew ← (qA, qB).y −→ z
14: R′C ← R′C ∪ {rnew}

15: π(rnew)← π(rnew) + (w1 · w2)
16: return MC
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Figure 2.14: Graphical representation of COVER, Algorithm 14. At line 13, position v of
tree u is chosen. As depicted in Figure 2.14a, in this case, u(v) is δ and has two children.
One member (z, θ,w) of Πlast is depicted in Figure 2.14b. The tree z has a leaf position
v′ with label χ and there is an entry for (v, v′) in θ, so as indicated on lines 16 and 17,
we look for a rule with state θ(v, v′) = qB and left symbol δ. One such rule is depicted
in Figure 2.14c. Given the tree u, the triple (z, θ,w), and the matching rule, we can build
the new member of Πv depicted in Figure 2.14d as follows: The new tree is built by
first transforming the (state, variable) leaves of h; if the ith child of v is a (state, variable)
symbol, say, (q, x), then leaves in h of the form (q′′, xi) are transformed to (q, q′′, x) symbols,
otherwise they become χ. The former case, which is indicated on line 24, accounts for
the transformation from q′′B1

.x1 to (qA, q′′B1
).x4. The latter case, which is indicated on line

26, accounts for the transformation from q′′B2
.x2 to χ. The result of that transformation

is attached to the original z at position v′; this is indicated on line 27. The new θ′ is
extended from the old θ, as indicated on line 18. For each immediate child vi of v that
has a corresponding leaf symbol in h marked with xi at position v′′, the position in the
newly built tree will be v′v′′. The pair (vi, v′v′′) is mapped to the state originally at v′′,
as indicated on line 22. Finally, the new weight is obtained by multiplying the original
weight, w with the weight of the rule, w′.
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Algorithm 14 COVER
1: inputs
2: u ∈ T∆(QA × X)
3: wT MB = (QB,∆,Γ,RB, q20) overW
4: state qB ∈ QB

5: outputs
6: setΠ of triples {(z, θ,w) : z ∈ TΓ((QA ×QB)×X), θ a partial mapping pos(u) × pos(z)

→ QB, and w ∈ W}, each triple indicating a successful run on u by rules in RB,
starting from qB, forming z, and w, the weight of the run.

7: complexity
8: O(|RB|

size(u))

9: if u(ε) is of the form (qA, x) ∈ QA × X then
10: Πlast ← {(((qA, qB), x), {((ε, ε), qB)}, 1)}
11: else
12: Πlast ← {(χ, {((ε, ε), qB)}, 1)}
13: for all v ∈ pos(u) such that u(v) ∈ ∆(k) for some k ≥ 0 in prefix order do
14: Πv ← ∅

15: for all (z, θ,w) ∈ Πlast do
16: for all v′ ∈ leaves(z) such that z(v′) = χ do
17: for all θ(v, v′).u(v) w′

−→ h ∈ RB do
18: θ′ ← θ
19: Form substitution mapping ϕ : (QB × X)→ TΓ((QA ×QB × X) ∪ {χ}).
20: for i = 1 to k do
21: for all v′′ ∈ pos(h) such that h(v′′) = (q′′B , xi) for some q′′B ∈ QB do
22: θ′(vi, v′v′′)← q′′B
23: if u(vi) is of the form (qA, x) ∈ QA × X then
24: ϕ(q′′B , xi)← ((qA, q′′B ), x)
25: else
26: ϕ(q′′B , xi)← χ
27: Πv ← Πv ∪ {(z[ϕ(h)]v′ , θ′,w · w′)}

Πlast ← Πv
28: return Πlast

Example 2.3.9 Let M7 = ({q1, q2},Σ,∆,R7, q1) and M8 = ({q3, q4, q5},∆,Γ,R8, q3) be wtts

where Σ and ∆ are those ranked alphabets defined in Examples 2.3.2, 2.1.1, and 2.1.3,

Γ = {υ(0), ψ(1), ω(2)
}, and R7 and R8 are depicted in Figures 2.15a and 2.15b, respectively.

Then M9 = ({q1q3, q2q3, q2q4, q2q5}, Σ, Γ, R9, q1q3), where R9 is depicted in Figure 2.15c, is

formed by Algorithm 13 applied to M7 and M8.
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(a) R7, rule set of M7.
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(c) R9, rule set of the composed transducer M9.

Figure 2.15: Rule sets for transducers described in Example 2.3.9.
62



θ z w
(ε, ε)→ q3
(1, 1.1)→ q3
(2, 2)→ q3
(2.1, 2.1.1)→ q3
(2.2, 2.2)→ q3

ω

ω

q1q3.x1 υ

ω

ω

υ υ

q2q3.x1

.112

(ε, ε)→ q3
(1, 1.1)→ q3
(2, 2)→ q3
(2.1, 2.1)→ q3
(2.2, 2.2)→ q4

ω

ω

q1q3.x1 υ

ω

υ q2q4.x1

.14

(ε, ε)→ q3
(1, 1)→ q3
(2, 2)→ q4
(2.1, 2.1)→ q3
(2.2, 2.2)→ q5

ω

q1q4.x1 ω

υ q2q5.x1

.21

Figure 2.16: Π formed in Example 2.3.9 as a result of applying Algorithm 14 to ν(q1.x1,
ν(λ, q2.x1)), M8, and q3.
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Let us describe in more detail how the rules of Figure 2.15c are formed, particularly

rules 10, 11, and 12. The first state pair chosen in line 10 is (q1, q3). Of particular interest

to us is what happens when rule 1 is chosen at line 11. We now turn to Algorithm 14,

which finds all coverings of ν(q1.x1, ν(λ, q2.x1)) with rules from M8, starting from q3. A

covering is denoted by the output tree z that is formed from assembling right sides of

rules from M8 (and that will become the newly produced rule’s right side), the mapping

θ, which indicates how z was built, and the derivation weight w corresponding to the

product of the weights in the rules used to form the covering. Figure 2.16 shows the

three entries for z, θ, and w corresponding to the three coverings of ν(q1.x1, ν(λ, q2.x1))

with rules from M8, starting from q3. The entries correspond to the derivations (4, 4, 7),

(4, 5, 7), and (5, 6, 7), respectively.

Variations on COVER are presented in Chapter 4. These variations are different from

the algorithm presented here in that the “tiling” device is a wrtg, not a transducer, a

result tree is not explicitly built, and the algorithms allow on-the-fly discovery of the

tiling wrtg’s productions.

2.4 Tree-to-string and string machines

We have thus far focused our discussion on tree-generating automata (wrtgs) and tree-

transforming transducers (wxtts and wtts). However, it is frequently the case that we

wish to transform between tree and string objects. Parsing, where a tree structure is

placed on top of a given string, and recent work in syntactic machine translation are

good examples of this. This motivates the description of two more formal machines, the
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weighted context-free grammar, a well studied string analogue to wrtgs, and the weighted,

extended tree-to-string transducer, a minor variation on wxtts.

Note in the definitions below that ε is a special symbol not contained in any terminal,

nonterminal, or state set. It denotes the empty word.

Definition 2.4.1 (cf. Salomaa and Soittola [117]) A weighted context-free grammar (wcfg)

over semiringW is a 4-tuple G = (N, ∆, P, n0) where:

1. N is a finite set of nonterminals, with n0 ∈ N the start nonterminal

2. ∆ is the terminal alphabet.

3. P is a tuple (P′, π), where P′ is a finite set of productions, each production p of the

form n −→ g, n ∈ N, g ∈ (∆ ∪ N)∗, and π : P′ → W is a weight function of the

productions. Within these constraints we may (and usually do) refer to P as a finite

set of weighted productions, each production p of the form n
π(p)
−−−→ g. We associate

P with G, such that, e.g., p ∈ G is interpreted to mean p ∈ P.

For wcfg G = (N,∆,P,n0), e, f , g ∈ (∆ ∪N)∗, n ∈ N, and p ∈ P of the form n w
−→ g ∈ P,

we obtain a derivation step from e to f by replacing an instance of n in e with g. Formally,

e ⇒p
G f if there exist e′, e′′ ∈ (∆ ∪ N)∗ such that e = e′ne′′ and f = e′ge′′. We say this

derivation step is leftmost if e′ ∈ ∆∗. Except where noted and needed, we henceforth

assume all derivation steps are leftmost and drop the subscript G. If, for some m ∈ N,

pi ∈ P, and ei ∈ (∆ ∪ N)∗ for all 1 ≤ i ≤ m, n0 ⇒
p1 e1 . . . ⇒pm em, we say the sequence

(p1, . . . , pm) is a derivation of em in G and that n0 ⇒
∗ em. The weight of a derivation d,

wt(d), is the product of the weights of all occurrences of its productions.
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Definition 2.4.2 A weighted extended top-down tree-to-string transducer (wxtst) is a

5-tuple M = (Q, Σ, ∆, R, q0) where:

1. Q and Σ are defined as for wtts, and ∆ is defined as for wcfgs.

2. R is a tuple (R′, π). R′ is a finite set of rules, each rule r of the form q.y w
−→ g for

q ∈ Q, y ∈ TΣ(X), and g ∈ (∆∪ (Q×X))∗. We further require that y is linear in X, i.e.,

no variable x ∈ X appears more than once in y, and that each variable appearing

in g is also in y. π : R′ →W is a weight function of the rules. As for wrtgs, wtts,

and wcfgs, we refer to R as a finite set of weighted rules, each rule r of the form

q.y
π(r)
−−−→ g.

For wxtst M = (Q,Σ,∆,R, q0), e, f ∈ (∆ ∪ (Q × TΣ))∗, q ∈ Q, and r ∈ R of the form

q.y w
−→ g where g = g1g2 . . . gk for some k ∈ N, and gi ∈ ∆ ∪ (Q × X), 1 ≤ i ≤ k, we

obtain a derivation step from e to f by replacing some substring of e of the form (q, t),

where q ∈ Q, t ∈ TΣ, and t matches y, by a transformation of g, where each instance of a

variable has been replaced by a corresponding subtree of the y-matching tree. Formally,

e⇒r
M f if there exist e′, e′′ ∈ (∆∪ (Q×TΣ))∗ such that e = e′(q, t)e′′ , a substitution mapping

ϕ : X → TΣ, and a rule q.y w
−→ g ∈ R such that t = ϕ(y) and f = e′θ(g1) . . . θ(gk)e′′, where

θ is a mapping ∆ ∪ (Q × X) → ∆ ∪ (Q × TΣ) defined such that θ(λ) = λ for all λ ∈ ∆

and θ(q, x) = (q, ϕ(x)) for all q ∈ Q and x ∈ X. We define leftmost, derivation, and wt for

wxtst as we do for wcfg. We also define a weighted tree-string transformation τM(s, f ) for

all s ∈ TΣ and f ∈ ∆∗ in an analogous way to that for weighted tree transformations.

We extend the properties linear and nondeleting to wxtst. We differentiate wxtst from

wxtt by appending the letter “s” and omit the letter “x” to denote wxtst without extended
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(b) production set P11 from from example wcfg G11.

Figure 2.17: Rules and productions for an example wxtst and wcfg, respectively, as
described in Example 2.4.3.

left sides (i.e., wtsts). Thus, xNTs is the class of nondeleting wxtsts over the Boolean

semiring, and wLNTs is the class of linear and nondeleting wtsts over an arbitrary

semiring. Note that as for wcfgs, the right side of a wxtst rule can be ε, but we retain the

original nomenclature for an ε-free wxtst.

We do not provide an extensive recap of algorithms for these string-based structures

as we did for wrtgs and wxtts, as most of the algorithms previously presented are

intuitively extendable, or inapplicable to the string or tree-string case. In Chapters 4 and

5 we will discuss algorithms that are interestingly defined for wxtsts.

Example 2.4.3 Let M10 = ({q1, q2},Σ,∆,R10, q1) be a wxtst where Σ is the ranked alphabet

defined in Examples 2.3.2, 2.1.1, 2.1.3, and 2.3.9, ∆ = {λ}, and R10 is depicted in Figure

2.17a. Additionally, let G11 = ({q1, q2},∆,P1, q1) be a wcfg where P11 is depicted in Figure

2.17b. Note that G11 is the range projection of M10.
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2.5 Useful classes for NLP

Knight [73] laid out four properties tree transducers should have if they are to be of much

use in practical NLP systems:

• They should be expressive enough to capture complicated transformations seen in

observed natural language data.

• They should be inclusive enough to generalize other well-known transducer classes.

• They should be teachable so that a model of real-world transformations informed

by observed data can be built such that the model’s parameters coincide with the

transducers’ transformations.

• They should be modular, so that complicated transformations can be broken down

into several discrete, easy-to-build transducers and then used together.

Knight instantiated these general properties in four concrete ways:

• An expressive transducer can capture the local rotation demonstrated in Figure

2.18.

• A teachable transducer can use EM and a training corpus to assign weights to the

transducer’s rules.

• An inclusive transducer generalizes wfst.

• A modular transducer is closed under composition.

Knight analyzed several classes of tree transducer, including many of those discussed

in this chapter, as well as classes beyond the scope of this thesis such as bottom-up tree
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Figure 2.18: Example of the tree transformation power an expressive tree transducer
should have, according to Knight [73]. The re-ordering expressed by this transformation
is widely observed in practice, over many sentences in many languages.

transducers, and determined that none of them had all four of the desired properties.

One of the classes analyzed in [73], wxLNT, is of particular interest because it is the

basis of a state-of-the-art machine translation system [47, 46]. From the perspective of

the four desired properties it is also quite promising, as wxLNT is expressive, teachable,

and inclusive, though not modular according to Knight’s definitions, because it is not

closed under composition. However, one may reasonably consider a transducer as

modular if it and its inverse preserve recognizability. A transducer (or its inverse) preserves

recognizability if the transformation of all members of a recognizable language by the

transducer is itself a recognizable language.7 Transducer classes with this property satisfy

the idea of modularity since they can then be used in a pipelined cascade in a forward

or backward direction, with each transducer processing the output of its neighbor.

Figure 2.19, which is analogous to a similar figure in [73], depicts the generalization

relationship between the classes of transducer discussed in this thesis as well as the

desired properties they satisfy, substituting preservation of recognizability for closure

under composition. As can be seen from the figure, wxLNT possesses all the desired

7We will discuss preservation of recognizability formally and in greater detail in Chapter 4.
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expressive for local rotation

Figure 2.19: Tree transducers and their properties, inspired by a similar diagram by
Knight [73]. Solid lines indicate a generalization relationship. Shaded regions indicate
a transducer class has one or more of the useful properties described in Section 2.5. All
transducers in this figure have an EM training algorithm.

properties and is thus a good choice for further research. With the exception of compo-

sition, all the tree transducer-related algorithms discussed in this thesis are appropriate

for wxLNT, and even the composition algorithm can be used to compose a wxLNT with

a wLNT. The tree-to-string variant of wxLNT, wxLNTs, also satisfies these properties, if

we consider modularity for a wxLNTs to mean it produces a recognizable string language

given a recognizable tree language as input.

2.6 Summary

We have discussed the principal formal structures of interest in this thesis and presented

useful algorithms for them, some of which are presented in implementable algorithmic

form for the first time. We defer discussion of some algorithms, such as weighted
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determinization of wrtgs, training of wrtgs and wxtts, and application of a wxtt to a wrtg

to subsequent chapters.
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Chapter 3

D W T A

In this chapter we present the first practical determinization algorithm for chain production-

free wrtgs in normal form.1 This work, which was first presented in [95], elevates a

determinization algorithm for wsas to the tree case and demonstrates its effectiveness

on two real-world experiments using acyclic wrtgs. We additionally present joint work

with Matthias Büchse and Heiko Vogler that proves the correctness of our determiniza-

tion algorithm for acyclic wrtgs and lays out the conditions for which this algorithm is

appropriate for cyclic wrtgs. That work was first presented in [17].

3.1 Motivation

A useful tool in natural language processing tasks such as translation, speech recognition,

parsing, etc., is the ranked list of results. Modern systems typically produce competing

partial results internally and return only the top-scoring complete result to the user. They

1A chain production-free wrtg in normal form is equivalent to a weighted tree automaton (wta). In this
chapter we will primarily speak in terms of wrtgs but our visualizations will be of wtas, which provide some
visual intuition. Additionally it should be noted that the original work this chapter is based on discussed
wtas exclusively.
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are, however, also capable of producing lists of runners-up, and such lists have many

practical uses:

• The lists may be inspected to determine the quality of runners-up and motivate

model changes.

• The lists may be re-ranked with extra knowledge sources that are difficult to apply

during the main search.

• The lists may be used with annotation and a tuning process, such as in Collins and

Roark [26], to iteratively alter feature weights and improve results.

Figure 3.2 shows the best 10 English translation parse trees obtained from a syntax-

based translation system based on that of Galley et al. [47]. Notice that the same tree

occurs multiple times in this list. This repetition is quite characteristic of the output of

ranked lists. It occurs because many systems, such as the ones proposed by Bod [10],

Galley et al. [47], and Langkilde and Knight [84] represent their result space in terms

of weighted partial results of various sizes that may be assembled in multiple ways.

There is in general more than one way to assemble the partial results to derive the same

complete result. Thus, the k-best list of results is really a k-best list of derivations.

When list-based tasks, such as the ones mentioned above, take as input the top k

results for some constant k, the effect of repetition on these tasks is deleterious. A list

with many repetitions suffers from a lack of useful information, hampering diagnostics.

Repeated results prevent alternatives that would be highly ranked in a secondary rerank-

ing system from even being considered. And a list of fewer unique trees than expected

can cause overfitting when this list is used to tune. Furthermore, the actual weight of
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1122
(a) Nondeterministic wrtg

1122
(b) After determinization

Figure 3.1: Example of weighted determinization. We have represented a nondeter-
ministic wrtg as a weighted tree automaton, then used the algorithm presented in this
chapter to return a deterministic equivalent.

obtaining any particular tree is split among its repetitions, distorting the actual relative

weights between trees. As a more concrete example, consider Figure 3.1a, which depicts

a nondeterministic wrtg (as a bottom-up wta) over the probability semiring. This wrtg

has three paths, one of which recognizes the tree d(a, c) with weight .054, and two of

which recognize the tree d(a, b), once with weight .024 and once with weight .036. The

highest weighted path in this wrtg does not recognize the highest weighted tree in the

associated tree series. We would prefer a deterministic wrtg, such as in Figure 3.1b,

which combines the two paths for d(a, b) into one.

Mohri [99] encountered this problem in speech recognition, and presented a solution

to the problem of repetition in k-best lists of strings that are derived from wfsas. That work

described a way to use a powerset construction along with an innovative bookkeeping

system to determinize a wfsa, resulting in a wfsa that preserves the language but provides

a single, properly weighted derivation for each string in it. Put another way, if the input

wfsa has the ability to generate the same string with different weights, the output wfsa

generates that string with weight equal to the sum of all of the paths generating that string

in the input wfsa. Mohri and Riley [104] combined this technique with a procedure for
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34.73: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

•34.74: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the)
JJ(american) NNS(protests))))) .(.))
34.83: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

•34.83: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the)
JJ(american) NNS(protests))))) .(.))
34.84: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

•34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the)
JJ(american) NNS(protests))))) .(.))
•34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the)
JJ(american) NNS(protests))))) .(.))
34.87: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(arouse) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

•34.92: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the)
JJ(american) NNS(protests))))) .(.))

Figure 3.2: Ranked list of machine translation results with repeated trees. Scores shown
are negative logs of calculated weights, thus a lower score indicates a higher weight. The
bulleted sentences indicate identical trees.

efficiently obtaining k-best lists, yielding a list of string results with no repetition. Mohri’s

algorithm was shown to be correct if it terminates, and shown to terminate for acyclic

wsas over the probability and tropical semirings [101] as well as for cyclic wsas over the

tropical semiring that satisfy a structural property called the twins property.

In this chapter we extend that work to deal with wrtgs. We will present an algo-

rithm for determinizing wrtgs that, like Mohri’s algorithm, provides a correct result if it

terminates and that terminates both for acyclic wrtgs over the probability and tropical

semirings and for cyclic wrtgs satisfying an analogously defined twins property. We

apply this algorithm to wrtgs representing vast forests of potential outputs generated by

machine translation and parsing systems. We then use a variant of the k-best algorithm

of Huang and Chiang [59] to obtain lists of trees from the forests, both before and after de-

terminization, and demonstrate that applying the determinization algorithm improves

our results.
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3.2 Related work

Comon et al. [27] show the determinization of unweighted finite-state tree automata,

and prove its correctness. Borchardt and Vogler [14] present determinization of wtas

with a different method than the one we present here. Like our method, their method

returns a correct result if it terminates. However, their method requires the implementor

to specify an equivalence relation of trees; if such a relation has a finite number of

equivalence classes, then their method terminates ([13], Cor. 5.1.8). We consider our

method more practical than theirs because we require no such explicit specification, and

because when their method is applied to an acyclic wta, the resulting wta has a size on

the order of the number of derivations represented in the wta. Our method has the same

liability in the worst case, but in practice rarely exhibits this behavior.

3.3 Practical determinization

We recall basic definitions from Chapter 2, particularly that of semirings (Section 2.1.2),

tree series (Section 2.1.3), and wrtgs (Section 2.2). We introduce some more semiring

notions (cf. [17], Section 2). LetW be a semiring, and let w1 and w2 be values inW. We

sayW is zero-divisor free if w1 · w2 = 0 implies that w1 = 0 or w2 = 0,W is zero-sum free

if w1 + w2 = 0 implies that w1 = w2 = 0, andW is a semifield if it admits multiplicative

inverses, i.e., for every w ∈ W \ {0} there is a uniquely determined w−1
∈ W such that

w · w−1 = 1. Note that the probability semiring is a zero-divisor free and zero-sum free

semifield. The tropical semiring is also a zero-divisor free and zero-sum free semifield,
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if we disallow the ∗ operator and consequently remove the value −∞ from its carrier set.

For the probability semiring, w−1 = 1/w and for the tropical semiring, w−1 = −w.

The determinization algorithm is presented as Algorithm 15. It takes as input a chain

production-free and normal form wrtg Gin over a zero-sum free and zero-divisor free

semifieldW, and returns as output a deterministic wrtg Gout such that LGin = LGout . Like

the algorithm of Mohri [99], this algorithm is correct if it terminates, and will terminate

for acyclic wrtgs. It may terminate on some cyclic wrtgs, as described in the joint work

portion of Section 3.4, but we do not otherwise consider these cases in this chapter.

Determinizing a wrtg can be thought of as a two-stage process. First, the structure

of the wrtg must be determined such that a single derivation exists for each recognized

input tree. This is achieved by a classic powerset construction, i.e., a nonterminal must

be constructed in the output wrtg that represents all the possible reachable destination

nonterminals given an input and a label. Note that the structure of Algorithm 15 is very

similar to classical (unweighted) determinization, as presented in Algorithm 5.

In the second stage we deal with weights. For this we will use Mohri [99]’s concept of

the residual weight.2 We represent in the construction of nonterminals in the output wrtg

not only a subset of nonterminals of the input wrtg, but also a value associated with each

of these nonterminals, called the residual. Since we want the weight of the derivation

of each tree in Gout to be equal to the sum of the weights of all derivations of that tree

in Gin, we replace a set of productions in Gin that have the same right side with a single

production in Gout bearing the label and the sum of the weights of the productions. The

left nonterminal of the production in Gout represents the left nonterminals in each of the

2For ease of intuitive understanding we describe weights in this section over the probability semiring.
However, any semiring matching the conditions specified in Algorithm 15 will suffice.
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(a) Before determinization (b) After determinization

Figure 3.3: Portion of the example wrtg from Figure 3.1 before and after determinization.
Weights of similar productions are summed and nonterminal residuals indicate the
proportion of weight due to each original nonterminal.

combined productions and, for each nonterminal, the proportion of the weight from the

relevant original production.

Figure 3.3 shows the determinization of a portion of the example wrtg. Note that

the production leading to nonterminal R in the input wrtg contributes 0.2, which is 1
3

of the weight on the output wrtg production. The production leading to nonterminal

S in the input wrtg contributes the remaining 2
3 . This is reflected in the nonterminal

construction in the output wrtg. The complete determinization of the example wrtg is

shown in Figure 3.1b.

Let us consider in more detail how productions in Gout, the output wrtg, are formed.

It is illustrative to first describe the construction of terminal productions, i.e., those with

right side labels in Σ(0). This construction is done in lines 10–16. To be deterministic,

there can only be one terminal production for each unique terminal symbol α. And

as determined in line 11, the weight of this production is the sum of the weight of

all α-labeled productions in Gin. It remains to determine the left nonterminal of this

production. In the analogous construction for unweighted determinization this would

simply be a nonterminal representing the union of all left nonterminals of the α-labeled

productions in Gin, as can be seen in line 11 of Algorithm 5. For the weighted case we
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need to add a residual weight; to do this we simply calculate the fraction of the total

weight contributed by each production and assign that value to that production’s left

nonterminal, in line 12. The (possibly) newly constructed nonterminal is then added to

the set of nonterminals to be used in forming nonterminal productions.

The formation of nonterminal productions follows the same principle as that of

terminal productions, but a sequence of descendant (i.e., right side) nonterminals and the

contribution of that sequence to the production weight and the left nonterminal must be

considered. The formation in lines 21–29 is a joint generalization of the formation in lines

20–26 for rtgs and that of lines 10–12 in Figure 10 of [99] for wsas. A nonterminal symbol

σ and a sequence of nonterminals ~ρ is chosen in lines 21–22. To be deterministic, there can

only be one nonterminal production in Gout with right side σ(~ρ). To calculate the weight

of this production we consider each production in Gin that “fits” the selected symbol and

sequence, as indicated in the elements under the summation of line 23. A production fits

if it has the correct symbol σ and if each of the nonterminals in its descendant sequence

has a non-zero residual weight in the corresponding position of ~ρ. As calculated to

the right of the summation symbol in line 23, every production that fits contributes the

product of its weight and the residuals associated with its descendant nonterminals to

the new production’s weight. The contribution of each production is summed together

to form the total new production weight, in line 24. As in the unweighted case, the left

side nonterminal of the new production is calculated by taking the union of the left side

nonterminals of all fitting productions. The residual for each nonterminal in this union is

calculated by summing the individual contributions of fitting productions with left sides
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equal to that nonterminal.3 That fraction of the total production weight is the residual

for that nonterminal, as seen in line 26.

Finally, to ensure Gout has a single initial nonterminal, an unused symbol is added

to the set of nonterminals in Gout.4 A chain production is created linking the new initial

nonterminal to each nonterminal that has a non-zero residual associated with the initial

nonterminal of Gin. The weight of this production is equal to the residual associated with

the original initial nonterminal.5 This construction is done in lines 15–16 and 30–31.

3.4 Determinization using factorizations

This section presents a proof of correctness of Algorithm 15. It is joint work with Matthias

Büchse and Heiko Vogler, first published in [17]. The results are primarily due to the

other two authors, but our presentation of the material differs significantly, in order to

match our formalisms. In this section we present the idea of factorizations for weighted

automata, introduced by Kirsten and Mäurer [72], and extend it to wrtgs. We then show

that the construction of Algorithm 15 is indeed done via factorization. We also present

the initial algebra semantics, a method of calculating the tree series represented by a wrtg

that is different from that in Section 2.2, but equivalent in conclusion. This semantics is

crucial in demonstrating language equivalence. Next we prove that if determinization

via factorization terminates, it generates a wrtg with the same language as the input wrtg,

thus proving the construction of Algorithm 15 is correct. Finally we describe conditions

3Unlike in the terminal case, there can be more than one such production for a given symbol.
4In fact, it is the same initial nonterminal from Gin, but clearly that symbol has not been used thus far.
5This corresponds to the calculation of final weights in Algorithm 10 of [99].
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Algorithm 15 WEIGHTED-DETERMINIZE
1: inputs
2: wrtg Gin = (Nin,Σ,Pin,n0) over zero-sum free and zero-divisor free semifieldW in

normal form with no chain productions
3: outputs
4: deterministic wrtg Gout = (Nout ⊆ (P(N ×W) ∪ n0),Σ,Pout,n0) over W in normal

form such that LGin = LGout .
5: complexity
6: O(|Σ|kz̃|supp(LGin )|), where k is the highest rank in Σ and z̃ is the size of the largest tree

in supp(LGin), if LGin is finite.

7: Pout ← ∅

8: Ξ← ∅ {Seen nonterminals}
9: Ψ← ∅ {New nonterminals}

10: for all α ∈ Σ(0) do
11: wtotal =

⊕
n

w
−→α∈Pin

w

12: ρdst ← {(n,w · w−1
total) | n

w
−→ α ∈ Pin}

13: Ψ← Ψ ∪ {ρdst}

14: Pout ← Pout ∪ {ρdst
wtotal
−−−→ α}

15: if (n0,w) ∈ ρdst for some w ∈W then
16: Pout ← Pout ∪ {n0

w
−→ ρdst}

17: whileΨ , ∅ do
18: ρnew ← any element ofΨ
19: Ξ← Ξ ∪ {ρnew}

20: Ψ← Ψ \ {ρnew}

21: for all σ(k)
∈ Σ \ Σ(0) do

22: for all ~ρ = ρ1 . . . ρk | ρ1 . . . ρk ∈ Ξ
k, ρi = ρnew for some 1 ≤ i ≤ k do

23: φ← {(n,
⊕

n
w
−→σ(n1,...,nk)∈P(n)

in ,(n1,w1)∈ρ1,...,(nk,wk)∈ρk

w ·
k∏

i=1

wi) | P
(n)
in , ∅}

24: wtotal =
⊕

(n,w)∈φ

w

25: if wtotal , 0 then
26: ρdst ← {(n,w · w−1

total) | (n,w) ∈ φ}
27: if ρdst < Ξ then
28: Ψ← Ψ ∪ {ρdst}

29: Pout ← Pout ∪ {ρdst
wtotal
−−−→ σ(~ρ)}

30: if (n0,w) ∈ ρdst for some w ∈W then
31: Pout ← Pout ∪ {n0

w
−→ ρdst}

32: Nout ← Ξ ∪ {n0}

33: return Gout
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for which the algorithm terminates, and note that one of these applies to the experiments

presented in Section 3.5.

3.4.1 Factorization

We begin with a definition of factorization, an abstract algebraic structure, and then

describe how it relates to the determinization construction. We recall the typical notion

of vectors, and for some vector s we write si to indicate the member of s associated with

i ∈ I, where I is an index set for s. We write a finite vector s with members a, b, c as

〈a, b, c〉. When the indices are not clear (typically when I , N) and are, e.g., i1, i2, i3 we

denote their association with values as 〈i1 = a, i2 = b, i3 = c〉. We extend the definition

of the semiring multiplication · such that w · s, where w is a value ofW and s is a vector

of values ofW, is equal to the magnification of s by w. For example, if s = 〈a, b, c〉, then

w · s = 〈w · a,w · b,w · c〉.

Definition 3.4.1 (cf. [17]) Let A be a nonempty finite set. A pair ( f , g) is a factorization (of

dimension A over semiringW) if f :WA
\{0A
} →WA, g :WA

\{0A
} →W, and u = g(u)· f (u)

for every u ∈WA
\ {0A
}, whereWA denotes a vector of values ofW indexed on A, and 0A

denotes the vector indexed on A where all values are 0. A factorization is maximal if for

every u ∈WA and w ∈W, w · u , 0A implies f (u) = f (w · u). There is a uniquely defined

trivial factorization ( f , g) where f (u) = u and g(u) = 1 for every u ∈WA
\ {0A

}.

We now introduce a particular choice for ( f , g). We will first show that this particular

factorization is a maximal factorization, and then we will show that this factorization is

the factorization used in Algorithm 15.
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Lemma 3.4.2 (cf. [17], Lemma 4.2) Let A be a nonempty finite set, letW be a zero-sum

free semifield, and define f (u) and g(u) for every u ∈WA
\ {0A
}, such that g(u) =

⊕
a∈A ua

and f (u) = g(u)−1
· u. ( f , g) is a maximal factorization.

Proof We show that ( f , g) is a factorization. Let u ∈ WA
\ {0A

}. SinceW is zero-sum

free, g(u) , 0 and hence, g(u) · f (u) = g(u) · g(u)−1
· u = u. We show that ( f , g) is maximal.

Let w ∈W such that w · u , 0A. Moreover, let a ∈ A. Then

[
f (w · u)

]
a =
[
g(w · u)−1

· w · u
]
a

= (
⊕

a′∈A w · ua′)
−1
· w · ua

= (w ·
⊕

a′∈A ua′)
−1
· w · ua

= (
⊕

a′∈A ua′)
−1
· w−1

· w · ua

= g(u)−1
· ua

=
[

f (u)
]
a .

Nout, the nonterminal set of Gout, the result of Algorithm 15, consists of elements that

are subsets of Nin, the original nonterminal set, paired with nonzero values fromW.6 We

can thus interpret some n ∈ Nout as a member ofWNin , where nonterminals not appearing

in the original formulation of n take on the value 0 in this vector formulation.

Observation 3.4.3 Consider the mapping φ constructed in line 23 of Algorithm 15. The

weight of newly constructed productions in Pout, in line 29 is g(φ) and the left side

6It also consists of the special start nonterminal n0, but we do not consider that item in the current
discussion.
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nonterminal ρdst, formed in line 26, is f (φ). Analogous constructions are done in lines 11

and 12 for terminal productions, though φ is not explicitly represented.

3.4.2 Initial algebra semantics

In Section 2.2 we presented a semantics for wrtgs based on derivations that allows us,

given a wrtg G = (N,Σ,P,n0), to calculate the tree series LG. According to the semantics

presented in Section 2.2, the weight of a tree t ∈ TΣ is the sum of the weights of all

derivations from n0 to t using productions in P.

Here we present another semantics commonly used in the study of tree automata,

called the initial algebra semantics [45]. This semantics calculates the weight of a tree re-

cursively, as a function of the weights of its subtrees. In order to define this semantics for

wrtgs without significant modification from the definition for wtas, we limit the applica-

bility to normal form, mostly chain production-free wrtgs. The only chain productions

allowed are those used to simulate the “final weights” used in typical definitions of wta

(e.g., that of Fülöp and Vogler [45]). We consider them to be in a set Pchain distinct from

P and to all have the form n0
w
−→ n, where n , n0. Furthermore, if Pchain , ∅ then no p ∈ P

has n0 as its left nonterminal. If Pchain = ∅, this is equivalent to a final weight of 1 for n0

and 0 for all others. If Pchain , ∅, this is equivalent to a final weight of w for each n such

that n0
w
−→ n ∈ Pchain and 0 for all others.

We have previously considered the productions P of a wrtg as a set or pair (see

Section 2.2). In the initial algebra semantics we consider P a family (Pk | k ∈ N) of map-

pings, Pk : Σ(k)
→ WNk

×N. Thus, if P contains two productions n1
w1
−−→ σ(n2,n3,n4)

and n5
w2
−−→ σ(n2,n3,n4) (assuming σ ∈ Σ(3)), we can write P3(σ)n2n3n4,n1 = w1 and
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P3(σ)n2n3n4 = 〈n1 = w1,n2 = 0,n3 = 0,n4 = 0,n5 = w2〉. Since the particular mapping

is obvious given the state sequence subscript, we omit it, e.g., we write P(σ)n2n3n4,n1 in-

stead of P3(σ)n2n3n4,n1 . We now denote the weight of deriving a tree t from nonterminal n

using P 7 by hP(t)n. Then hP(t) ∈WN.

Let G = (N,Σ,P ∪ Pchain,n0) be in normal form. Then µP is a family (µP(σ) | σ ∈ Σ) of

mappings where for every k ∈ N and σ ∈ Σ(k) we have µP(σ) : WN
× . . . ×WN︸              ︷︷              ︸

k

→ WN

and for every s1, . . . , sk ∈W
N

µP(σ)(s1, . . . , sk)n =
⊕

(n1,...,nk)∈Nk

(s1)n1 · . . . · (sk)nk · Pk(σ)n1...nk,n .

For a tree t = σ(t1, . . ., tk), hP(t) = µP(σ)(hP(t1), . . ., hP(tk)). Additionally, if Pchain , ∅, µPchain

is a mapping N \ {n0} →W. If Pchain = ∅, then hP(t)n0 is the value of t in LG. Otherwise,

the value is
⊕

n∈N\{n0}
hP(t)n · µPchain(n). We finally note that the semantics in Section 2.2,

when applied to the class of wrtgs discussed here, is equivalent to the traditional run

semantics, and that the run and initial algebra semantics are proven equivalent in Section

3.2 of Fülöp and Vogler [45].

Observation 3.4.4 Consider φ ∈WNin constructed in line 23 of Algorithm 15 for σ ∈ Σ(k)

and ~ρ ∈ (WNin)k. Clearly, φ = µP(σ)(~ρ).

3.4.3 Correctness

Before we prove the correctness of Algorithm 15 we need to note a particular property of

deterministic wrtgs. The following lemma shows that there is at most one nonterminal

7which is equivalent to the sum of all derivations from n to t
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that can begin a chain production-free derivation of a tree in a deterministic normal-form

wrtg.

Lemma 3.4.5 Let G = (N,Σ,P ∪ Pchain,n0) be a deterministic normal-form wrtg overW

and let t ∈ TΣ. There is at most one n ∈ N such that n ⇒∗ t using P and at most one

derivation d from n to t using P.

Proof We prove by induction on size(t). Let size(t) = 1. Thus, t has the form α, where

α ∈ Σ(0). Assume there are n,n′ ∈ N such that n⇒∗ α and n′ ⇒∗ α using P. Since the size

is 1, n ⇒p α and n′ ⇒p′ α for some p, p′ ∈ P. By definition, p = n w
−→ α and p′ = n′ w′

−→ α

for some nonzero w,w′ ∈W. But then G is not deterministic, so our assumption must be

false. Clearly, if there is one nonterminal n such that n ⇒p α, then the single derivation

d is (p).

Now assume the lemma is true for trees of size i or smaller. Let t be a tree of size i+ 1.

Then, t has the form σ(t1, . . . , tk) where σ ∈ Σ(k) and size(t j) ≤ i, 1 ≤ j ≤ k. By the induction

hypothesis either there exist unique n1, . . . ,nk ∈ N such that n j ⇒
∗ t j using P for 1 ≤ j ≤ k,

or at least one such n j does not exist. In the latter case, clearly there is no n ∈ N such

that n ⇒∗ t using P. For the former case, this means that σ(n1, . . . ,nk) ⇒∗ t using P. Let

d1, . . . , dk be the single derivations of, respectively, t1, . . . , tk. Then (d1 . . . dk) is clearly the

single derivation from σ(n1, . . . ,nk) to t, that notation implying a concatenation of the

productions in the derivation of each subtree. Then, assume there are n,n′ ∈ N such that

n⇒∗ t and n′ ⇒∗ t using P. Because G is in normal form and because of the uniqueness

of n1, . . . ,nk, n ⇒p σ(n1, . . . ,nk) ⇒∗ t and n′ ⇒p′ σ(n1, . . . ,nk) ⇒∗ t for some p, p′ ∈ P. By

definition, p = n w
−→ σ(n1, . . . ,nk) and p′ = n′ w′

−→ σ(n1, . . . ,nk) for some nonzero w,w′ ∈W.
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But then G is not deterministic, so our assumption must be false. Then, if there is a single

nonterminal n such that n⇒p σ(n1, . . . ,nk)⇒∗ t, then the single derivation d is (pd1 . . . dk).

We break the proof of correctness of Algorithm 15 into an initial lemma that does

most of the work, and the theorem, which finishes the proof. These two components are

very related to Theorem 5.3 of [17], though the structure is somewhat different.

Lemma 3.4.6 (cf. [17], Thm. 5.3) Let Gin = (Nin,Σ,Pin,n0) be the input to Algorithm 15,

let the algorithm terminate on G, and let Gout = (Nout,Σ,Pout ∪ Pchain,n0) be the output. For

every t ∈ TΣ and n ∈ Nin, hPin(t) =
⊕

n′∈Nout
hPout(t)n′ · n′.

Proof We immediately note that by Lemma 3.4.5 we can rewrite the conclusions of

this lemma as “hPin(t) = hPout(t)n′ · n′ if there is some n′ ∈ Nout such that hPout(t)n′ , 0, or 0

otherwise.”

We will prove the lemma by induction on the size of t. Let t be of size 1. Then t

has the form α, where α ∈ Σ(0). According to line 14 of Algorithm 15, if there is at least

one production with right side α in Pin, there is a single production p′ = n′
wtotal
−−−→ α in

Pout, where wtotal is nonzero. If p′ does not exist, then hPin(t)n = 0 for any selection of n,

so the statement is true. If p′ does exist, then hPout(t)n′ = wtotal. Now, for any n ∈ Nin,

hPin(t)n = Pin(α)ε,n. If there is some p ∈ Pin of the form n w
−→ α this value is w, or else it is 0.

As indicated on line 12, in the former case, the weight of n′n is w · w−1
total, and in the latter

case it is 0. Thus, if hPin(t)n = w, hPout(t)n′ = wtotal · w · w−1
total = w and otherwise both sides

are 0.
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Now assume the lemma is true for trees of size i or smaller. Let t be a tree of size i+ 1.

Then, t has the form σ(t1, . . . , tk) where σ ∈ Σ(k) and size(t j) ≤ i, 1 ≤ j ≤ k. By Lemma 3.4.5

there are uniquely defined n′1, . . . ,n
′

k ∈ Nout such that for 1 ≤ i ≤ k, hPout(ti)n′i
, 0.

hPin(t) = µPin(σ)(hPin(t1), . . . , hPin(tk)) (definition of semantics)

= µPin(σ)(hPout(t1)n′1
· n′1, . . . , hPout(tk)n′k

· n′k) (induction hypothesis)

= hPout(t1)n′1
· . . . · hPout(tk)n′k

· µPin(σ)(n′1, . . . ,n
′

k) (commutativity)

Either hPin(t) = 0Nin or it does not. In the former case, since
∏k

j=1 hPout(t j)n′j
is not 0,8

it must be that µPin(σ)(n′1, . . . ,n
′

k) = 0. If the sequence n′1, . . . ,n
′

k is chosen as ~ρ on line 22

of the algorithm then the value for wtotal set on line 24 is 0, and thus Pout(σ)n′1...n
′

k
= 0Nout .

Thus, hPout(t) = 0Nout .

In the latter case, consider line 26, in which ρdst is calculated as f (µPin(σ)(n′1, . . . ,n
′

k)).

Note further that on line 29, g(µPin(σ)(n′1, . . . ,n
′

k)) is chosen as the weight of the newly

produced production, thus Pout(σ)s′,ρdst = g(µPin(σ)(~ρ)). We continue the derivation from

above:

hPin(t) = hPout(t1)n′1
· . . . · hPout(tk)n′k

· µPin(σ)(n′1, . . . ,n
′

k) (from above)

= hPout(t1)n′1
· . . . · hPout(tk)n′k

· g(µPin(σ)(n′1, . . . ,n
′

k)) · ~ρ (definition of f and g)

= hPout(t)~ρ · ~ρ (line 29 and definition)

8No term in that product is 0 andW is zero divisor-free
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We are finally ready to show language equivalence, which is now a simple matter.

We note that LGin = LGout iff for any t ∈ TΣ, hPin(t)n0 = hPout∪Pchain(t)n0 .

Theorem 3.4.7 Let Gin = (Nin,Σ,Pin,n0) be the input to Algorithm 15, let the algorithm

terminate on Gin, and let Gout = (Nout,Σ,Pout ∪ Pchain,n0) be the output. For every t ∈ TΣ,

hPin(t)n0 = hPout∪Pchain(t)n0 .

Proof If there is no unique n′ ∈ Nout such that hPout(t)n′ is nonzero then by Lemma 3.4.6

and by definition, hPin(t)n0 = hPout∪Pchain(t)n0 = 0. If Pchain = ∅, then for all n′ ∈ Nout \ {n0},

n′n0
= 0, since otherwise some chain production would be added in lines 16 or 31 of the

algorithm. Then, again, by Lemma 3.4.6 and by definition, hPin(t)n0 = hPout∪Pchain(t)n0 = 0.

The remaining case assumes that there is a unique n′ ∈ Nout such that hPout(t)n′ is nonzero

and that Pchain is nonempty.

hPin(t)n0 = hPout(t)n′ · n′n0
(Lemma 3.4.6)

= hPout(t)n′ · Pchain(n′)

= hPout∪Pchain(t)n0

3.4.4 Termination

We have shown, in Theorem 3.4.7, that Algorithm 15 is correct if it terminates. Since, even

if it terminates, the algorithm’s runtime is in the worst case exponential, to an engineer

the conditions for termination are not as useful as the conditions for terminating with
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a specified time. In fact, we have followed that tactic in our implementation of the

algorithm by simply providing users with a maximum time to wait before considering

determinization not possible for a given input; see Chapter 6 for details. However, it

is theoretically interesting and can be generally useful to know certain conditions for

termination. In this section we prove that Algorithm 15 terminates on acyclic normal

form chain production-free wrtgs. This was also proven in [17] but we use a different

approach. We briefly note that Algorithm 15 terminates whenW has a finite carrier set,

echoing a similar statement in [17]. And, we describe the main result of [17], sufficient

conditions for determinization of cyclic wrtgs to terminate. The proof of this result is

beyond the scope of this thesis, so we only outline the conditions and refer the reader to

[17] for the details.

A wrtg G = (N,Σ,P,n0) is cyclic if, for some n ∈ N and t ∈ TΣ(N) such that n ∈ ydset(t),

n⇒∗ t. It should be clear that for an acyclic normal form chain production-free wrtg G,

LG(t) = 0 for all t ∈ TΣ such that height(t) > |N|. Since for any k ∈N, the set of trees in TΣ

of height k is finite, supp(LG) is finite.

Theorem 3.4.8 Algorithm 15 terminates on acyclic input.

Proof As can be seen from the structure of Algorithm 15, the only way it can fail to

terminate is if the loop at line 17 is always satisfied, i.e., if the nonterminal set is not finite.

As noted above, an acyclic wrtg implies finite support. Then, consider the means by

which nonterminals of Gout are formed. At most |Σ(0)
| are added at line 14. The only other

addition of nonterminals comes at line 28. As noted in Observation 3.4.3, a nonterminal

is formed as a function of the φ created in line 23. There is thus at most one nonterminal

90



Figure 3.4: Sketch of a wsa that does not have the twins property. The dashed arcs are
meant to signify a path between states, not necessarily a single arc. q and r are siblings
because they can both be reached from p with a path reading “xyz”, but are not twins,
because the cycles from q and r reading “abc” have different weights. s and r are not
siblings because they cannot be both reached from p with a path reading the same string.
q and s are siblings because they can both be reached from p with a path reading “def”
and they are twins because the cycle from both states reading “abc” has the same weight
(and they share no other cycles reading the same string). Since q and r are siblings but
not twins, this wsa does not have the twins property.

for every unique φ that can be formed in this algorithm. As noted in Observation 3.4.4,

φ = µP(σ)(~ρ). If, for a given σ ∈ Σ(k), there is a finite choice of ~ρ that produces φ , 0Nout ,

then Nout is finite. By Lemma 3.4.5, for any tree t ∈ TΣ there is at most one n′ ∈ Nout

such that hPout(t) , 0Nout . Thus the size of Nout is at most the number of unique subtrees

in supp(LG). If we let z̃ be the size of the largest tree in supp(LG), then there are at most

kz̃|supp(LG)| choices for ~ρ that produce φ , 0Nout .

We note that ifW has a finite carrier set, i.e., finitely many possible value, then clearly

Algorithm 15 terminates, since |Nout| = |W||Nin| + 1, where |W| is the cardinality of the

carrier set.
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Figure 3.5: A wsa that is not cycle-unambiguous. The state q has two cycles reading the
string “ab” with two different weights.

Finally, we present sufficient conditions for termination of cyclic wrtgs, the proof of

which is the main result of [17]. As noted previously, the proof of these termination

conditions is beyond the scope of this work.

A cyclic wrtg G overW is determinizable by Algorithm 15 ifW is extremal and if G

has the twins property ([17], Theorem 5.2). A semiring is extremal if for every w,w′ ∈W,

w + w′ ∈ {w,w′}. For example, the tropical semiring is extremal.

To introduce the twins property, let us first consider the analogous concept for wsas.

Two states in a wsa that can be reached from the start state reading string e are siblings,

and two siblings q and q′ are twins if for every string f such that there is a cycle at q and

at q′ reading f , the weights of these cycles are the same. A wsa has the twins property if

all siblings in the wsa are twins. Figure 3.4 is a sketch of a wsa demonstrating sibling

and twin states. It was shown by Mohri [99] that cyclic wsa are determinizable if they

have the twins property. Furthermore, Allauzen and Mohri [2] showed that the twins

test is decidable if a wsa is cycle-unambiguous, that is, if there is at most one cycle at a

state reading the same string. Figure 3.5 sketches a wsa that is not cycle-unambiguous.

The concepts of twins and cycle-unambiguity are elevated to the tree case as follows:

A wrtg G = (N,Σ,P,n0) has the twins property if, for every n,n′ ∈ N, t ∈ TΣ, and

u ∈ TΣ({z}) where z < (N ∪ Σ) and u(v) = z for exactly one v ∈ pos(u), if LG(t)n , 0,
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LG(t)n′ , 0, LG(u[n]v)n , 0, and LG(u[n′]v)n′ , 0, then LG(u[n]v)n = LG(u[n′]v)n′ . The twins

property for wrtgs is depicted in Figure 3.6. G is cycle-unambiguous if for any n ∈ N

and u ∈ TΣ({n}) where u(v) = z for exactly one v ∈ pos(u), there is at most one derivation

from n to u. Büchse et al. [18] showed, in Theorem 5.17, that the twins property for

cycle-unambiguous normal-form and chain-production free wrtgs over a commutative

zero-sum-free and zero-divisor-free is decidable.

Figure 3.6: Demonstration of the twins test for wrtgs. If there are non-zero derivations
of a tree t for nonterminals n and n’, and if the weight of the sum of derivations from n
of u substituted at v with n is equal to the weight of the sum of derivations from n’ of u
substituted at v with n’ for all u where these weights are nonzero for both cases, then n
and n’ are twins.

3.5 Empirical studies

We now turn to some empirical studies. We examine the practical impact of the presented

work by showing:
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• That the multiple derivation problem is pervasive in practice and determinization

is effective at removing duplicate trees.

• That duplication causes misleading weighting of individual trees and the summing

achieved from weighted determinization corrects this error, leading to re-ordering

of the k-best list.

• That weighted determinization positively affects end-to-end system performance.

We also compare our results to a commonly used technique for estimation of k-best

lists, i.e., summing over the top j > k derivations to get weight estimates of the top m ≤ j

unique elements.

M BLEU
undeterminized 21.87

top-500 “crunching” 23.33
determinized 24.17

Table 3.1: BLEU results from string-to-tree machine translation of 116 short Chinese
sentences with no language model. The use of best derivation (undeterminized), estimate
of best tree (top-500), and true best tree (determinized) for selection of translation is
shown.

3.5.1 Machine translation

We obtain packed-forest English outputs from 116 short Chinese sentences computed

by a string-to-tree machine translation system based on that of Galley et al. [47]. The

system is trained on all Chinese-English parallel data available from the Linguistic Data

Consortium. The decoder for this system is a CKY algorithm that negotiates the space

described by DeNeefe et al. [30]. No language model was used in this experiment.
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The forests contain a median of 1.4 × 1012 English parse trees each. We remove

cycles from each forest,9 apply our determinization algorithm, and extract the k-best

trees using a variant of the algorithm of Huang and Chiang [59]. The effects of weighted

determinization on a k-best list are obvious to casual inspection. Figure 3.7 shows

the improvement in quality of the top 10 trees from our example translation after the

application of the determinization algorithm.

The improvement observed circumstantially holds up to quantitative analysis as well.

The forests obtained by the determinized grammars have between 1.39% and 50% of the

number of trees of their undeterminized counterparts. On average, the determinized

forests contain 13.7% of the original number of trees. Since a determinized forest contains

no repeated trees but contains exactly the same unique trees as its undeterminized

counterpart, this indicates that an average of 86.3% of the trees in an undeterminized

MT output forest are duplicates.

Weighted determinization also causes a surprisingly large amount of k-best reorder-

ing. In 77.6% of the translations, the tree regarded as “best” is different after determiniza-

tion. This means that in a large majority of cases, the tree with the highest weight is

not recognized as such in the undeterminized list because its weight is divided among

its multiple derivations. Determinization allows these instances and their associated

weights to combine and puts the highest weighted tree, not the highest weighted deriva-

tion, at the top of the list.

9As in Mohri [99], determinization may be applicable to some wrtgs that recognize infinite languages.
In practice, cycles in forests of MT results are almost never desired, since these represent recursive insertion
of words.
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We can compare our method with the more commonly used methods of “crunching”

j-best lists, where j > k. The duplicate sentences in the k trees are combined, hopefully

resulting in at least k unique members with an estimation of the true tree weight for each

unique tree. Our results indicate this is a rather crude estimation. When the top 500

derivations of the translations of our test corpus are summed, only 50.6% of them yield

an estimated highest-weighted tree that is the same as the true highest-weighted tree.

As a measure of the effect weighted determinization and its consequential re-ordering

has on an actual end-to-end evaluation, we obtain BLEU scores for our 1-best translations

from determinization, and compare them with the 1-best translations from the undeter-

minized forest and the 1-best translations from the top-500 “crunching” method. The

results are in Table 3.1. Note that in 26.7% of cases determinization did not terminate in

a reasonable amount of time. For these sentences we used the best parse from top-500

estimation instead. It is not surprising that determinization may occasionally take a long

time; even for a language of monadic trees (i.e., strings) the determinization algorithm is

NP-complete, as implied by Casacuberta and de la Higuera [19] and, e.g., Dijkstra [32].

3.5.2 Data-Oriented Parsing

Determinization of wrtgs is also useful for parsing. Data-Oriented Parsing (DOP)’s

methodology is to calculate weighted derivations, but as noted by Bod [11], it is the

highest ranking parse, not derivation, that is desired. Since Sima’an [121] showed that

finding the highest ranking parse is an NP-complete problem, it has been common to

estimate the highest ranking parse by the previously described “crunching” method.
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31.87: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

32.11: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

32.15: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(arouse) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

32.55: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(cause) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

32.60: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(attracted) NP-C(NPB(DT(the)

JJ(american) NNS(protests))))) .(.))

33.16: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(provoke) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

33.27: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBG(causing) NP-C(NPB(DT(the) JJ(american)

NNS(protests)))) .(.))

33.29: S(NP-C(NPB(DT(this) NN(case))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american)

NNS(protests))))) .(.))

33.31: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) NN(protest))

PP(IN(of) NP-C(NPB(DT(the) NNS(united states))))))) .(.))

33.33: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(incurred) NP-C(NPB(DT(the)

JJ(american) NNS(protests))))) .(.))

Figure 3.7: Ranked list of machine translation results with no repeated trees.

We create a DOP-like parsing model10 by extracting and weighting a subset of sub-

trees from sections 2-21 of the Penn Treebank and use a DOP-style parser to generate

packed forest representations of parses of the 2416 sentences of section 23. The forests

contain a median of 2.5 × 1015 parse trees. We then remove cycles and apply weighted

determinization to the forests. The number of trees in each determinized parse forest is

reduced by a factor of between 2.1 and 1.7 × 1014. On average, the number of trees is

reduced by a factor of 900,000, demonstrating a much larger number of duplicate parses

prior to determinization than in the machine translation experiment. The top-scoring

parse after determinization is different from the top-scoring parse before determinization

for 49.1% of the forests. When the determinization method is “approximated” by crunch-

ing the top-500 parses from the undeterminized list, only 55.9% of the top-scoring parses

are the same. This indicates the crunching method is not a very good approximation of

determinization. We use the standard F-measure combination of recall and precision to

10This parser acquires a small subset of subtrees, in contrast with DOP, and the beam search for this
problem has not been optimized.
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M R P F-
undeterminized 80.23 80.18 80.20

top-500 “crunching” 80.48 80.29 80.39
determinized 81.09 79.72 80.40

Table 3.2: Recall, precision, and F-measure results on DOP-style parsing of section 23 of
the Penn Treebank. The use of best derivation (undeterminized), estimate of best tree
(top-500), and true best tree (determinized) for selection of parse output is shown.

E U D
machine translation 1.4 × 1012 2.0 × 1011

parsing 2.5 × 1015 2.3 × 1010

Table 3.3: Median trees per sentence forest in machine translation and parsing exper-
iments before and after determinization is applied to the forests, removing duplicate
trees.

score the top-scoring parse in each method against reference parses, and report results

in Table 3.2. Note that in 16.9% of cases determinization did not terminate. For those

sentences we used the best parse from top-500 estimation instead.

3.5.3 Conclusion

We presented a novel algorithm for practical determinization of wrtgs and, together

with colleagues, proved that it is correct and that it terminates on acyclic wrtgs. We

have shown that weighted determinization is useful for recovering k-best unique trees

from a weighted forest. As summarized in Table 3.3, the number of repeated trees

prior to determinization was typically very large, and thus determinization is critical

to recovering true tree weight. We have improved evaluation scores by incorporating

the presented algorithm into our MT work and we believe that other NLP researchers

working with trees can similarly benefit from this algorithm. An implementation of this

algorithm is available in the Tiburon tree automata toolkit (See Chapter 6).
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Chapter 4

I  C

In this chapter we present algorithms for forward and backward application of weighted

tree-to-tree and tree-to-string transducers to wrtgs, trees, and strings. We discuss ap-

plication of cascades of transducers and methods of efficient inference that perform an

integrated search through a cascade. We also present algorithms for constructing deriva-

tion wrtgs for EM training of cascades of tree transducers, based on the application

algorithms.

Although application is a well-established concept for both string and tree trans-

ducers, we do not believe explicit algorithms for conducting application have been

previously presented, even for unweighted tree transducers. Current theoretical work

is being done on application of weighted tree-to-tree transducers [43], but again, we are

the first to describe these explicit algorithms. Our algorithm for backward application

of tree-to-string transducers, while making use of classic parsing algorithms, is novel.

So, too, is our extension of application to xwtt and our use of application to construct

derivation wrtgs of cascades.
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4.1 Motivation

We are interested in the result of transformation of some input by a transducer, called

application. We’d like to do some inference on this result, such as determining the k-best

transformations of the input or knowing all the paths that transform the input into some

given output. When we are given the input and want to know how the transducer

transforms it, we call this forward application. When we are given the output and want

to know the possible inputs that cause the transducer to produce this output, we call

this backward application. In this chapter we discuss forward and backward application

algorithms.

We also consider a generalization of this problem. We want to divide up our problems

into manageable chunks, each represented by a transducer. It is easier for designers to

write several small transducers where each performs a simple transformation, rather than

a single complicated transducer. We’d like to know, then, the result of transformation of

input by a cascade of transducers, one operating after the other. As we will see, there are

various ways of approaching this problem. We will consider offline composition, bucket

brigade application, and on-the-fly application.

4.2 String case: application via composition

Before we discuss application of tree transducers, it is helpful to consider the solutions

already known for application of string transducers. Imagine we have a string and a

wst that can transform that string in a possibly infinite number of ways, each with some

weight. We’d like to know the k highest-weighted of these outputs. If we could represent
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(a) Input string “a a” embedded in an
identity wst.

(b) wst for application.

(c) Result of composition. (d) Result of range projection.

Figure 4.1: Application of a wst to a string.

these outputs as a wsa this would be an easy task, as there are well-known algorithms to

efficiently find the k-best paths in a wsa [104]. Fortunately, we know it is in fact possible

to find this wsa—wsts preserve recognizability, meaning given some weighted regular

language1 and some wst there exists some weighted regular language representing all

the outputs. This language can be represented as a wsa, which we call the application wsa.

The properties of wsts are such that, given several already-known algorithms, we can

build application wsas without defining a new algorithm. Specifically, we will achieve

application through a series of embedding, composition, and projection operations. As

an aid in explanation, we provide a running example in Figure 4.1. Embedding is a trivial

operation on strings and wsas: a string is embedded in a wsa by creating a single state

and outgoing edge per symbol in the string. In turn, a wsa is embedded in an identity wst

by, for every edge in a wsa with label a, forming an edge in the embedded wst with the

same incoming state, outgoing state, and weight, but with both input and output labels

a. In Figure 4.1a, the string “a a” has been embedded in a wst. Composition of wst is well

1The set of regular languages includes those languages containing a single string with weight 1.
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A Ba : a / 1 a : a / 1 C
(a) Input string “a a” embed-
ded in an identity wst.

Ea : b / . 1 a : a / . 9b : a / . 5 D a : b / . 4 a : a / . 6b : a / . 5b : b / . 5b : b / . 5
(b) First wst in cascade.

a : c / . 6b : c / . 7 F a : d / . 4b : d / . 3
(c) Second wst in cascade.

E Fa : c / . 0 7 a : c / . 5 4b : c / . 6 5b : d / . 3 5 D F a : c / . 2 8 a : c / . 3 6b : c / . 6 5b : d / . 3 5a : d / . 3 6a : d / . 0 3 a : d / . 2 4a : d / . 1 2
(d) Offline composition approach:
Compose the transducers.

A D B D C Da : b / . 1 B Ea : a / . 9 C E
(e) Bucket brigade approach:
Apply wst (b) to wst (a).

A D F B D F C D Fd / . 0 3 c / . 0 7B E Fc / . 5 4 C E Fc / . 5 4 c / . 3 6 c / . 2 8c / . 0 7d / . 3 6 d / . 0 3d / . 3 6 d / . 1 2d / . 2 4
(f) Result of offline or bucket appli-
cation after projection.A D F B D F C D Fd / . 0 3 B E Fc / . 5 4 C E Fc / . 3 6c / . 2 8c / . 0 7d / . 3 6 d / . 1 2d / . 2 4

(g) Initial on-the-fly
stand-in for (f).

A D F B D F C D Fd / . 0 3 B E Fc / . 5 4 C E Fc / . 3 6c / . 2 8c / . 0 7d / . 3 6 d / . 1 2d / . 2 4
(h) On-the-fly stand-in after exploring
outgoing edges of state ADF.

A D F B D F C D Fd / . 0 3 B E Fc / . 5 4 C E Fc / . 3 6 c / . 2 8c / . 0 7d / . 3 6 d / . 1 2d / . 2 4
(i) On-the-fly stand-in after best path has
been found.

Figure 4.2: Three different approaches to application through cascades of wsts.

covered by, e.g., Mohri [101]. The result of the composition of the wsts of Figures 4.1a

and 4.1b is shown in Figure 4.1c. Projecting a wst to a wsa is also trivial: to obtain a range

projection, we ignore all the input labels in our wst, and to obtain a domain projection,

we ignore all the output labels. The range projection of the transducer of Figure 4.1c

is shown in Figure 4.1d. Figure 4.1d, then, depicts the result of the application of the

transducer of Figure 4.1b to the string “a a”. Note that we can also use this method to

solve the reverse problem, where we are given an output string (or set of outputs) and

we want the k-best of the set of inputs. To do so, we follow an analogous procedure,

embedding the given output string or wsa in an identity wst, composing, and this time

projecting the domain, and running k-best.
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4.3 Extension to cascade of wsts

Now consider the case of an input wsa and a sequence of transducers. Our running

example in Figure 4.2 again uses the string “a a” as input and a cascade comprising the

transducer from Figure 4.1 (reproduced in Figure 4.2b) and a second transducer, depicted

in Figure 4.2c. There are at least three ways to perform application through this cascade.

Firstly, we can compose the sequence of transducers before even considering the given

wsa, using the aforementioned composition algorithm. We will call this approach offline

composition. The result of this composition is depicted in Figure 4.2d. The problem, then,

is reduced to application through this single-transducer case. We compose the embedded

transducer of Figure 4.2a with the result from Figure 4.2d and project, forming the wsa

in Figure 4.2f.

Secondly, we can begin by only initially considering the first transducer in the chain,

and compose the embedded wsa with it, as if we were doing a single-transducer appli-

cation, obtaining the result in Figure 4.2e. If there are “dead” states and edges in this

transducer, i.e., those that cannot be in any path, they may be removed at this time.

Then, instead of projecting, we continue by composing that transducer with the next

transducer in the chain, i.e., that of Figure 4.2c, and then finally take the range projection,

again obtaining the wsa in Figure 4.2f. This approach is called the bucket brigade.

A third approach builds the application wsa incrementally, as dictated by some

algorithm that requests information about it. Such an approach, which we call on-the-fly,

was described in, e.g., [109, 101, 103]. These works generally described the effect of this

approach rather than concrete algorithms, and for the moment we will do likewise, and
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presume we can efficiently calculate the outgoing edges of a state of some wsa or wst on

demand, without calculating all edges in the entire machine. The initial representation

of the desired application wsa is depicted in Figure 4.2g and consists of only the start

state. Now, consider Algorithm 16, an instantiation of Dijkstra’s algorithm that seeks

to find the cost of the highest-cost path in a wsa.2 Notice that this algorithm only ever

needs to know the identity of the start state, whether a state is the final state, and for a

given state, the set of outgoing edges. We can use the wsa formed by offline composition

or bucket brigade as input, but we can also use our initial wsa of Figure 4.2g as input.

At line 15, the algorithm needs to know the outgoing edges from state ADF, the only

state it knows about. Our on-the-fly algorithms allow us to discover such edges, and the

application wsa is now that depicted in Figure 4.2h. We are able to determine the cost

of a path to a final state once our application wsa looks like Figure 4.2i, at which point

we can return the value “.1944”. No other edges need be added to the application wsa.

Notice an advantage over the other two methods is that not all the possible edges of the

application wsa are built, and thus on-the-fly application can be faster than traditional

methods. However, one disadvantage of the on-the-fly method is that work may be done

to build states and edges that are in no valid path, as the incrementally-built wsa cannot

be trimmed while the bucket brigade-built wsa can have dead states trimmed after each

composition.

2Algorithm 16 requires a unique final state. We can convert any wsa into a wsa of this form by adding
transitions with ε labels and weights of 1 from any final states to a new unique final state.
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Algorithm 16 DIJKSTRA
1: inputs
2: wsa A = (Q,Σ,E, q0, {q f }) overW
3: outputs
4: weight w ∈W, the weight of the highest-cost path from q0 to q f in A
5: complexity
6: O(|E| + |Q| log |Q|), if a Fibonacci heap is used for queuing.

7: cost(q0)← 1
8: Q ← q0
9: Ξ← {q0} {seen nonterminals}

10: while Q is not empty do
11: q← state from Qwith highest cost
12: Remove q from Q
13: if q = q f then
14: return cost(q)

15: for all e of the form q
σ/w
−−−→ p in E do

16: if p < Ξ then
17: cost(p)← cost(q) · w
18: Q ← Q∪ {p}
19: Ξ← Ξ ∪ {p}
20: else
21: cost(p)← max(cost(p), cost(q) · w)
22: return 0
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T P. ? S
wxT No See NT
xT No See NT
wT No See NT
T No See NT

wxLT OQ [91]
xLT Yes [90], Thm. 4, cl. 2
wLT OQ [91]
LT Yes [48] Cor. IV.6.6

wxNT No See NT
xNT No See NT
wNT No See NT
NT No [48] Thm. 6.11

wxLNT Yes [43]
xLNT Yes [90], Thm. 4, cl. 1
wLNT Yes [82], Cor. 14
LNT Yes see wLNT

(a) Preservation of forward recognizability

T P. ? S
wxT No See wNT
xT Yes Thm. 4.4.5
wT No See wNT
T Yes [48] Cor. IV.3.17

wxLT Yes [43]
xLT Yes See wxLT
wLT Yes See wxLT
LT Yes See wxLT

wxNT No See wNT
xNT Yes See xT
wNT No [91]
NT Yes See xT

wxLNT Yes See wxLT
xLNT Yes See wxLT
wLNT Yes See wxLT
LNT Yes See wxLT

(b) Preservation of backward recognizability

Table 4.1: Preservation of forward and backward recognizability for various classes of
top-down tree transducers. Here and elsewhere, the following abbreviations apply: w
=weighted, x = extended left side, L = linear, N = nondeleting, OQ = open question.

4.4 Application of tree transducers

Now let us revisit these stories with trees and tree transducers. Imagine we have a

tree and a wtt that can transform that tree with some weight. We’d like to know the

k-best trees the wtt can produce as output, along with their weights. We already know

of at least one method for acquiring k-best trees from a wrtg [59], so we then must

ask if, analogously to the string case, wtts preserve recognizability and we can form an

application wrtg.

We consider preservation of recognizability first. Known results for top-down tree

transducer classes considered in this thesis are shown in Table 4.1. Unlike the string case,

preservation of recognizability is not universal or symmetric. If a transducer preserves

forward recognizability, then a regularly limited domain implies a regular range, and if
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it preserves backward recognizability, then a regularly limited range implies a regular

domain.3 Succinctly put, wxLNT and its subclasses preserve forward recognizability,

as does xLT and its subclass LT. The two cases marked as open questions and the other

classes, which are superclasses of NT, do not or are presumed not to. All classes except

wNT and its subclasses preserve backward recognizability. We do not consider cases

where recognizability is not preserved in the remainder of this chapter. If a transducer

M of a class that preserves forward recognizability is applied to a wrtg G, we can call the

forward application wrtg M(G). and if M preserves backward recognizability, we can

call the backward application wrtg M(G)/.

Now that we have defined the application problem and determined the classes for

which application is possible, let us consider how to build forward and backward ap-

plication wrtgs. An initial approach is to mimic the results found for wsts, by using an

embed-compose-project strategy. However, we must first consider whether, as in string

world, there is a connection between recognizability and composition. We introduce a

theorem to present that connection and outline the cases where this strategy is valid.

We recall the various definitions from Section 2.1. To them we add the following:

The application of a weighted tree transformation τ : TΣ × T∆ to a tree series L : TΣ →W

is a tree series τ〈L〉 : T∆ →Wwhere for every s ∈ T∆, τ〈L〉(s) =
⊕

t∈TΣ
L(t) · τ(t, s).

Next, we need three lemmas. The first two demonstrate the semantic equivalence

between application and composition.

3Formally speaking, it is not the transducers that preserve recognizability but their transformations and one
must speak of a transformation preserving recognizability (analogous to a transducer preserving forward
recognizability) or its inverse doing so (analogous to preserving backward recognizability).
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Lemma 4.4.1 (forward application composition connection) Let L be a tree series TΣ→

W. Let τ be a weighted tree transformation TΣ × T∆→W. Then τ〈L〉 = range(ıL ; τ).

Proof For any t ∈ T∆:

range(ıL ; τ)(t) =
⊕
s∈TΣ

ıL ; τ(s, t) Definition of range

=
⊕
s∈TΣ

⊕
u∈TΣ

ıL(s,u) · τ(u, t) Definition of composition

=
⊕
s∈TΣ

ıL(s, s) · τ(s, t) Remove elements equal to 0

=
⊕
s∈TΣ

L(s) · τ(s, t) Definition of identity

= τ〈L〉(t) Definition of application

Lemma 4.4.2 (backward application composition connection) Let L be a tree series T∆

→W. Let τ be a weighted tree transformation TΣ × T∆→W. Then τ−1
〈L〉 = dom(τ; ıL).

Proof For any t ∈ TΣ:

dom(τ; ıL)(t) =
⊕
s∈T∆

τ; ıL(t, s) Definition of domain

=
⊕
s∈T∆

⊕
u∈T∆

τ(t,u) · ıL(u, s) Definition of composition

=
⊕
s∈T∆

τ(t, s) · ıL(s, s) Remove elements equal to 0

=
⊕
s∈T∆

τ(t, s) · L(s) Definition of identity

= τ−1
〈L〉(t) Definition of application

For the third lemma we need to introduce the universal tree series, which recognizes all

possible trees in a language with weight 1. We will then show that for any transformation,
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application of the universal tree series is equivalent to the range of the transformation,

and for the transformation’s inverse, application is equivalent to the domain.

Definition 4.4.3 The universal tree series of TΣ over semiringW is a tree series UTΣ : TΣ

→Wwhere, for every t ∈ TΣ, UTΣ(t) = 1. Note that UTΣ is recognizable. This can be easily

verified by defining the wrtg G = ({n},Σ,P,n) where, for every σ ∈ Σ(k), n 1
−→ σ(n, ...,n) ∈ P.

Clearly, LG = UTΣ .

Lemma 4.4.4 (application of universal equal to range) Let τ be a weighted tree trans-

formation TΣ × T∆ →W. Then τ〈UTΣ〉 = range(τ) and τ−1
〈UT∆〉 = dom(τ).

Proof For any t ∈ T∆:

τ〈UTΣ〉 =
⊕
s∈TΣ

UTΣ(s) · τ(s, t) Definition of application

=
⊕
s∈TΣ

τ(s, t) Definition of universal tree series

= range(τ)(t) Definition of range

The second statement is easily obtained by substituting τ−1 and UT∆ for τ and UTΣ ,

respectively. .

We may now prove the theorem.

Theorem 4.4.5 (due to Maletti [91]) For a weighted top-down tree transducer class A

over semiringW, if class A is closed under left-composition4 (respectively, right-composition)

with LNT(W) then “A has recognizable range (respectively, domain) over semiringW”

⇔ “A (respectively, A−1) preserves recognizability”.

4Tree transducer class A is said to be closed under left- (respectively, right-) composition with class B if
B ◦ A ⊆ A (respectively, A ◦ B ⊆ A).
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Proof We begin with the forward case. Let A be a class of wtt such that A is closed

under left-composition with LNT. Let M be a wtt of class A over semiring W and

let L be a recognizable tree series over W. First we assume that M has recognizable

range. Due to the properties of class A, ıL ◦M is in class A. Then, from Lemma 4.4.1,

τM〈L〉 = range(τıL◦M). Based on our assumption, the latter has recognizable range, thus

the former does too, and thus τM preserves recognizability. Next we assume that τM

preserves recognizability. Since UTΣ is recognizable, τM〈UTΣ〉 is recognizable. From

Lemma 4.4.4, τM〈UTΣ〉 = range(τ), thus range(τ) is recognizable.

Now for the backward case, let A be a class of wtt such that A is closed under right-

composition with LNT. Again, let M be a wtt of class A over semiringW and let L be a

recognizable tree series overW. First, we assume that M has recognizable domain. Then,

M ◦ ıL has recognizable domain and from Lemma 4.4.2, τ−1
M 〈L〉 = dom(τM◦ıL ) does too.

Thus τ−1
M preserves recognizability. Now assume τ−1

M preserves recognizability. Since

UT∆ is recognizable, τ−1
M 〈UT∆〉 is recognizable. From Lemma 4.4.4, τ−1

M 〈UT∆〉 = dom(τ),

thus dom(τ) is recognizable.

This theorem implies that, for those classes that preserve recognizability and are

closed under the appropriate composition,5 a composition-based approach to application

can be taken. Table 4.2 shows relevant composition results for potentially viable classes.

As can be seen from Table 4.2, the embed-compose-project approach will work for

backward application cases but will not work for most forward application cases. The

reader should note, however, that the composition results in Table 4.2 are for composition

5and have the appropriate recognizable projection, but this is always true by definition of classes pre-
serving recognizability; see the proof.

110



T
L-

S
 ()LNT?

xLT No [92], Lem. 4.3
LT No [39], p. 207

wxLNT No See xLNT
xLNT No [92], Thm. 5.2
wLNT Yes [89], Thm. 26
LNT Yes see wLNT

(a) For forward application

T
R-

S
 ()LNT?

xT Yes See T
T Yes [6], Cor. 2

wxLT Yes [89], Thm. 26
xLT Yes See xT
wLT Yes See wxLT
LT Yes See T

xNT Yes See xT
NT Yes See T

wxLNT Yes See wxLT
xLNT Yes See xT
wLNT Yes See wxLT
LNT Yes See T

(b) For backward application

Table 4.2: For those classes that preserve recognizability in the forward and backward
directions, are they appropriately closed under composition with (w)LNT? If the an-
swer is “yes”, then an embedding, composition, projection strategy can be used to do
application.

0

a

x1 x2

a

1.x1 2.x2

1
−→0 b b1

−→1

c c1
−→1

(a) Input tree a(b c) embedded in an identity
wLNT.

q
a

x1 x2

a

d

q.x1

q.x2

2
−→q a

x1 x2

a

q.x2 d

q.x1

3
−→q

b b1
−→q c c2

−→q

c e3
−→q

(b) wLNT for forward application.

0q
a

x1 x2

a

d

1q.x1

2q.x2

2
−→0q a

x1 x2

a

2q.x2 d

1q.x1

3
−→0q

b b1
−→1q c c2

−→2q

c e3
−→2q

(c) Result of composition.

0q

a

d

1q

2q

0q 2
−→ a

2q d

1q

0q 3
−→

b1q 1
−→ c2q 2

−→

e2q 3
−→

(d) Result of projection.

Figure 4.3: Composition-based approach to application of a wLNT to a tree.
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g0

σ

g0 g1

g0
w1
−−→

γ

g0

g0
w2
−−→

αg0
w3
−−→

αg1
w4
−−→

(a) Input wrtg G.

m1

σ

x0 x1

σ

m2.x0 m3.x1

w5
−−→m1

σ

x0 x1

ψ

m4.x0 m3.x1

w6
−−→m1

γ

x0

m2.x0
w7
−−→m2

σ

x0 x1

σ

m3.x0 m3.x1

w8
−−→m2

α α
w9
−−→m3

α ρ
w10
−−→m4

(b) First transducer (wLNT) M1 in the
cascade.

n1

σ

σ

x0 x1

x2

δ

n2.x0 n2.x1 n2.x2

w11
−−→n1

α α
w12
−−→n2

(c) Second transducer (wxLNT)
M2 in the cascade.

Figure 4.4: Inputs for forward application through a cascade of tree transducers.

with transducers of the class (w)LNT, while an embedded RTG is in a narrower class than

this—it is a relabeling, deterministic (w)LNT. But then, in order to accomplish application

via an embed-compose-project approach for the classes not appropriately closed with

(w)LNT but closed with this narrow class, we must have a composition algorithm for

this very specific class of transducers. Instead, it seems better to focus our energies on

designing application algorithms.

Before we discuss application algorithms, it is important to note the re-emergence of

COVER algorithms in this chapter, similar to Algorithm 14 from Chapter 2. It should

not be much of a surprise that the same kind of algorithm comes up in a discussion of

application, which is very similar in principle to composition. We will in fact describe

two separate COVER variants here, Algorithms 18 and 21. All three algorithms match
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g0m1

σ

g0m2 g1m3

g0m1
w1w5
−−−−→

ψ

g0m4 g1m3

g0m1
w1w6
−−−−→

g0m2g0m2
w2w7
−−−−→

σ

g0m3 g1m3

g0m2
w1w8
−−−−→

αg1m3
w4w9
−−−−→

αg0m3
w3w9
−−−−→

ρg0m4
w3w10
−−−−→

(a) Forward application of M1 to G: G1.

g0m1

σ

g0m2 g1m3

g0m1
w1w5
−−−−→

ψ

g0m4 g1m3

g0m1
w1w6
−−−−→

σ

g0m3 g1m3

g0m2
w1w8(w2w7)∗
−−−−−−−−−→

αg1m3
w4w9
−−−−→

αg0m3
w3w9
−−−−→

ρg0m4
w3w10
−−−−→

(b) After chain production removal of G1.

g0m1

δ

g0m3n2 g1m3n2 g1m3n2

g0m1n1
w1w5w1w8((w2w7)∗)w11
−−−−−−−−−−−−−−−−→

αg0m3n2
w3w9w12
−−−−−−→

αg1m3n2
w4w9w12
−−−−−−→

(c) Final result through the cascade.

Figure 4.5: Results of forward application through a cascade of tree transducers.
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trees to patterns of rules in a top-down manner, as described in Section 2.3.3. However,

Algorithm 14 is concerned with joining together the right hand side of a rule from one

tree transducer with a pattern of rules from a second, to form rules in a composition

transducer. Algorithms 18 and 21, on the other hand, match a tree to a wrtg, and are

concerned with the weight of matching derivations and the states reached in the wrtg,

but do not need to construct new trees. These algorithms also differ from Algorithm 14

in that they invoke recursive calls to discover available productions in the input wrtgs,

as will be discussed in more detail in Section 4.5. Both of the COVER algorithms in

this chapter return mappings from tree positions to nonterminals; this allows the calling

algorithms to convert trees that are parts of transducer rules into trees that form the right

sides of new wrtg productions. Algorithm 18 primarily differs from Algorithm 21 in that

the former matches wxtt rule left sides to trees and the latter matches right sides.

Algorithm 17 FORWARD-APPLICATION
1: inputs
2: wrtg G = (N,Σ,P,n0) overW in normal form with no chain productions
3: linear wxtt M = (Q,Σ,∆,R, q0) overW
4: outputs
5: wrtg G′ = (N′,∆,P′,n′0) such that if M is nondeleting orW is Boolean, LG′ = τM(LG)
6: complexity
7: O(|R||P|l̃), where l̃ is the size of the largest left side tree in any rule in R

8: N′ ← (N ×Q)
9: n′0 ← (n0, q0)

10: P′ ← ∅
11: for all (n, q) ∈ N′ do
12: for all r of the form q.t

w1
−−→ s in R do

13: for all (φ,w2) ∈ FORWARD-COVER(t,G,n) do
14: Form substitution mapping ϕ : Q×X→ T∆(N ×Q) such that ϕ(q′, x) = (n′, q′)

if φ(v) = n′ and t(v) = x for all q′ ∈ Q, n′ ∈ N, x ∈ X, and v ∈ pos(t).
15: P′ ← P′ ∪ {(n, q)

w1 · w2
−−−−−→ ϕ(s)}

16: return G′
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Algorithm 18 FORWARD-COVER
1: inputs
2: t ∈ TΣ(A), where A ∩ Σ = ∅
3: wrtg G = (N,Σ,P,n0) in normal form, with no chain productions
4: n ∈ N
5: outputs
6: set Π of pairs {(φ,w) : φ a mapping pos(t)→ N and w ∈W}, each pair indicating a

successful run on t by productions in G, starting from n, and the weight of the run.
7: complexity
8: O(|P|size(t))

9: Πlast ← {((ε,n), 1)}
10: for all v ∈ pos(t) such that t(v) < A in pre-order do
11: Πv ← ∅

12: for all (φ,w) ∈ Πlast do
13: if G �M(G). for some wrtg G and w(x)tt M then
14: G← FORWARD-PRODUCE(G,M,G, φ(v))

15: for all φ(v) w′
−→ t(v)(n1, ...,nk) ∈ P do

16: Πv ← Πv ∪ {(φ ∪ {(vi,ni), 1 ≤ i ≤ k},w · w′)}
17: Πlast ← Πv
18: return Πlast

Algorithm 17 produces the application wrtg for those classes of tree transducer pre-

serving recognizability listed in Table 4.1a. The implementation optimization previously

described in Chapter 2 for Algorithms 6, 7, 8, and 13 applies to this algorithm as well.

Note that it covers several cases not allowed by the embed-compose-project strategy,

specifically wxLNT. It does require that the input wrtg be in normal form with no chain

productions; algorithms for ensuring these properties are described in previous sections.

The algorithm pairs nonterminals n from a wrtg G = (N,Σ,P,n0) with states q from a

transducer M = (Q,Σ,∆,R, q0), and finds a derivation starting with n that matches the

left hand side of a rule starting with q; this is done by a call to FORWARD-COVER at

line 13. The substitution mapping that converts the right hand side of the rule from a
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T C? S
wxT No See T
xT No See T
wT No See T
T No [48] Cor. IV.3.14

wxLT No See LT
xLT No See LT
wLT No See LT
LT No [48] Thm. IV.3.6

wxNT No See NT
xNT No See NT
wNT No See NT
NT No [6] Thm. 1

wxLNT No See xLNT
xLNT No [92] Thm. 5.4
wLNT Yes [45] Lem. 5.11
LNT Yes [48] Thm. IV.3.6

Table 4.3: Closure under composition for various classes of top-down tree transducer.

tree in T∆(Q×X) to a tree in T∆(N ×Q) appropriate for the output wrtg, is formed at line

14, enabling the new wrtg production to be built at line 15.

An example that uses this algorithm is provided below, in the discussion of applica-

tion through cascades; the example is relevant to the single transducer case as well.

4.5 Application of tree transducer cascades

What about the case of an input wrtg and a sequence of tree transducers? We will revisit

the three ways of accomplishing application discussed above for the string case.

In order for offline composition to be a viable strategy, the transducers in the cascade

must be closed under composition. As Table 4.3 shows, in general a cascade of tree

transducers of a given class cannot be composed offline to form a single transducer; the

lone exceptions being for a cascade of wLNT and LNT transducers.
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(a) Schematic of application on a wst cascade. The given wsa (or string) is embedded in an
identity wst, then composed with the first transducer in the cascade. In turn, each transducer
in the cascade is composed into the result. Then, a projection is taken to obtain the application
wsa.

(b) Schematic of application on a wtt cascade, illustrating the additional complexity compared
with the string case. The given wrtg (or tree) is embedded in an identity wtt, then composed
with the first transducer in the cascade. Then a projection is taken to form a wrtg, and this
wrtg must immediately be embedded in an identity wtt to ensure composability with the next
transducer.

Figure 4.6: Schematics of application, illustrating the extra work needed to use embed-
compose-project in wtt application vs. wst application.
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When considering the bucket brigade, we have two options for specific methods;

either the embed-compose-project approach or the custom algorithm approach can be

used. The embed-compose-project process is somewhat more burdensome than in the

string case. Recall that, for strings, application is obtained by an embedding, a series

of compositions, and a projection (see Figure 4.6a). As discussed above, in general the

“series of compositions” is impossible for trees. However, one can obtain application by

a series of embed-compose-project operations, as depicted in Figure 4.6b.

The custom algorithm case, which applies in instances the embed-compose-project

does not cover (see Table 4.2), is easily usable in a bucket brigade scenario. One must,

however, ensure the output of the algorithm is in normal form (using Algorithm 1) and

chain production-free (using Algorithm 3).

Let us now work through an example (depicted in Figures 4.4 and 4.5) of bucket

brigade through a cascade using custom algorithms in order to better understand the

mechanism of these algorithms. In particular we will use a cascade similar to one de-

scribed in [92] that demonstrated lack of closure under composition for certain classes.

As this example makes clear, even though the transducers in the cascade are not closed

under composition, the property of preservation of recognizability is sufficient for appli-

cation. In this example the weights are kept as variables so that the semiring operations

being performed remain obvious.

The input wrtg, which we will call G, is in Figure 4.4a and the transducers M1 and

M2 are in Figures 4.4b and 4.4c, respectively. In the example that follows we will first

form M1〈G〉 and then form M2〈M1〈G〉〉.
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Note that G is in normal form and is chain-production free, and M1 is linear and

nondeleting, so the inputs to Algorithm 17 are valid. As indicated on line 8, the nonter-

minals of the result will be pairs of (nonterminal, state) from the inputs and the initial

nonterminal is g0m1, corresponding to g0 from G and m1 from M1. In the main while

loop we consider productions from a particular new nonterminal, and we begin with

the new initial nonterminal. At line 12 we choose a rule from M1 beginning with m1,

namely m1.σ(x0, x1)
w5
−−→ σ(m2.x0,m3.x1). We then must invoke Algorithm 18, FORWARD-

COVER, to form a covering of the left side of this rule. At line 15 of FORWARD-COVER,

the production g0
w1
−−→ σ(g0, g1) is chosen to cover σ(x0, x1), and at line 16 g0 is mapped to

x0 and g1 to x1 and the weight of this mapping is set to w1, the weight of the production

used.6 Back in the main algorithm, this mapping is used to form the substitution map-

ping7 ϕ that ultimately converts the right side of the transducer rule, σ(m2.x0,m3.x1), into

σ(g0m2, g1m3). The weight of the rule is multiplied by the weight of the mapping, and

the new production g0m1
w1w5
−−−−→ σ(g0m2, g1m3) is formed. In a similar manner, the entire

application wrtg depicted in Figure 4.5a is formed.

The next task in the cascade is to apply M2 to the just-formed application wrtg.

However, the wrtg we just formed has chain productions in it. Thus, before continu-

ing a chain production removal algorithm (described elsewhere) is used to convert the

application wrtg to that depicted in Figure 4.5b. We then continue with application

of M2 to the wrtg of Figure 4.5b. The application process is the same as that just de-

scribed. Note, however, that the computation in FORWARD-COVER is somewhat more

6The meaning behind lines 13 and 14 of FORWARD-COVER will be shortly explained, but since the test
does not apply they can be safely skipped for now.

7Recall this definition from Section 2.1.4.
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complicated for n1.σ(σ(x0, x1), x2)
w11
−−→ δ(n2.x0,n2.x1,n2.x2) due to its extended left side.

In this case, the tree σ(σ(x0, x1), x2) is covered by g0m1
w1w5
−−−−→ σ(g0m2, g1m3) followed by

g0m2
w1w8(w2w7)∗
−−−−−−−−−→ σ(g0m3, g1m3). If we had more transducers in the cascade, we would

continue applying them to the result of the previous application step, but in our example

we are done after two applications. The final result is in Figure 4.5c.

Algorithm 19 FORWARD-PRODUCE
1: inputs
2: wrtg G = (N,Σ,P,n0) overW in normal form with no chain productions
3: linear wxtt M = (Q,Σ,∆,R, q0) overW
4: wrtg G′in = (N′in,∆,P

′

in,n
′

0) overW
5: nin ∈ N′in
6: outputs
7: wrtg G′out = (N′out,∆,P

′

out,n
′

0) overW where, if M is nondeleting orW is Boolean,

G′in �M(G). G′out, and for all w ∈W, t ∈ T∆(N′), nin
w
−→ t ∈ P′out ⇔ nin

w
−→ t ∈M(G).

8: complexity
9: O(|R||P|l̃), where l̃ is the size of the largest left side tree in any rule in R

10: if P′in contains productions of the form nin
w
−→ u then

11: return G′in
12: N′out ← N′in
13: P′out ← P′in
14: Let nin be of the form (n, q), where n ∈ N and q ∈ Q.
15: for all r of the form q.t

w1
−−→ s in R do

16: for all (φ,w2) ∈ FORWARD-COVER(t,G,n) do
17: Form substitution mapping ϕ : Q ×X→ T∆(N ×Q) such that, for all v ∈ ydset(t)

and q′ ∈ Q, if there exist n′ ∈ n and x ∈ X such that φ(v) = n′ and t(v) = x,
ϕ(q′, x) = (n′, q′).

18: for all p′′ ∈ NORMALIZE((n, q)
w1 · w2
−−−−−→ ϕ(s),N′out) do

19: Let p′′ be of the form n′′ w′′
−−→ δ(n′′1 , . . . ,n

′′

k ) for δ ∈ ∆(k).
20: Nout ← Nout ∪ {n′′,n′′1 , ...,n

′′

k }

21: P′out ← P′out ∪ {p
′′
}

22: return G′out

We next consider on-the-fly algorithms for application. As in the string case, an

on-the-fly approach is driven by a calling algorithm that periodically needs to know
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the productions in a wrtg with a common left side nonterminal. Both the embed-

compose-project approach and the previously defined custom algorithms produce entire

application wrtgs. In order to admit an on-the-fly approach we describe algorithms that

only generate those productions in a wrtg that have a given left nonterminal.

The following set of algorithms have a common flavor in that they take as input

a wrtg and a desired nonterminal and return another wrtg, different from the input

wrtg in that it has more productions, specifically those beginning with that specified

nonterminal. The wrtgs provided as input to and returned as output from these produce

algorithms can be thought of as stand-ins for some wrtg built in a non-on-the-fly manner.

Algorithms using these stand-ins should call an appropriate produce algorithm to ensure

the stand-in they are using has the productions beginning with the desired nonterminal.

Algorithm 19, FORWARD-PRODUCE, obtains the effect of forward application in

an on-the-fly manner. It takes as input a wrtg and appropriate transducer, as well as a

stand-in and desired nonterminal. As an example, consider the invocation FORWARD-

PRODUCE(G1, M1, Ginit, g0m0), where G1 is in Figure 4.7a, M1 is in 4.7b, and Ginit has

an empty production set and a nonterminal set consisting of only the start nonterminal,

g0m0. The stand-in wrtg that is output contains three productions:

g0m0
w1w4
−−−−→ σ(g0m0, g1m1), g0m0

w1w5
−−−−→ ψ(g0m2, g1m1), and g0m0

w2w6
−−−−→ α.

To demonstrate the use of on-the-fly application in a cascade, we next show the effect

of FORWARD-PRODUCE when used with the cascade of G1 M1, and M2, where M2 is

in Figure 4.7c. Our driving algorithm in this case is Algorithm 20, MAKE-EXPLICIT,

which simply generates the full application wrtg using calls to FORWARD-PRODUCE.

The input to MAKE-EXPLICIT is the first stand-in for M2(M1(G1).)., the result of forward

121



g0

σ

g0 g1

g0
w1
−−→

αg0
w2
−−→

αg1
w3
−−→

(a) Input wrtg G1.

m0

σ

x0 x1

σ

m0.x0 m1.x1

w4
−−→m0

σ

x0 x1

ψ

m2.x0 m1.x1

w5
−−→m0

α α
w6
−−→m0

α α
w7
−−→m1

α ρ
w8
−−→m2

(b) First transducer M1 in the cascade.

n0

σ

x0 x1

σ

n0.x0 n0.x1

w9
−−→n0

α α
w10
−−→n0

(c) Second transducer M2 in the
cascade.

σ

g0m0 g1m1

g0m0
w1·w4
−−−−→

ψ

g0m2 g1m1

g0m0
w1·w5
−−−−→

αg0m0
w2·w6
−−−−→

αg1m1
w3·w7
−−−−→

(d) Productions of M1(G1). built as a
consequence of building the complete
M2(M1(G1).)..

g0m0n0

σ

g0m0n0 g1m1n0

g0m0n0
w1·w4·w9
−−−−−−→

αg0m0n0
w2·w6·w10
−−−−−−−→

αg1m1n0
w3·w7·w10
−−−−−−−→

(e) Complete M2(M1(G1).)..

Figure 4.7: Forward application through a cascade of tree transducers using an on-the-fly
method.
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Algorithm 20 MAKE-EXPLICIT
1: inputs
2: wrtg G = (N,Σ,P,n0) in normal form
3: outputs
4: wrtg G′ = (N′,Σ,P′,n0), in normal form, such that LG = LG′ and if G � M(G). for

some wrtg G and w(x)tt M, G′ =M(G)..
5: complexity
6: O(|P′|)

7: G′ ← G
8: Ξ← {n0} {seen nonterminals}
9: Ψ← {n0} {pending nonterminals}

10: whileΨ , ∅ do
11: n←any element ofΨ
12: Ψ← Ψ \ {n}
13: if G′ �M(G). for some wrtg G and w(x)tt M then
14: G′ ← FORWARD-PRODUCE(G,M,G′,n)
15: for all n w

−→ σ(n1, ...,nk) ∈ P′ do
16: for i = 1 to k do
17: if ni < Ξ then
18: Ξ← Ξ ∪ {ni}

19: Ψ← Ψ ∪ {ni}

20: return G′
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application of M2 to M1(G1)., which is itself the result of forward application of M1 to

G1. This initial input is a wrtg with an empty production set and a single nontermi-

nal, g0m0n0, obtained by combining n0, the initial state from M2, with g0m0, the initial

nonterminal from the first stand-in for M1(G1).. MAKE-EXPLICIT calls FORWARD-

PRODUCE(M1(G1)., M2, M2(M1(G1).)., g0m0n0). FORWARD-PRODUCE then seeks to

cover n0.σ(x0, x1)
w9
−−→ σ(n0.x0,n0.x1) with productions from M1(G1)., thus it needs to

improve the stand-in for this wrtg. In FORWARD-COVER, there is a call to FORWARD-

PRODUCE that accomplishes this. The productions of M1(G1). that must be built to

form the complete M2(M1(G1).). are shown in Figure 4.7d. The complete M2(M1(G1).).

is shown in Figure 4.7e. Note that because we used this on-the-fly approach, we were

able to avoid building all the productions in M1(G1).; in particular we did not build

g0m2
w2w8
−−−−→ ρ, while a bucket brigade approach would have built this production.

Algorithm 22 is an analogous on-the-fly PRODUCE algorithm for backward appli-

cation. It is only appropriate for application on linear transducers. We do not provide

PRODUCE for non-linear tree transducers because weighted non-linear tree transducers

do not preserve backward recognizability, and on-the-fly methods are not terribly useful

for obtaining (unweighted) application rtgs. Since there is no early stopping condition

the entire application may as well be carried out.

We have now defined several on-the-fly and bucket brigade algorithms, and also

discussed the possibility of embed-compose-project and offline composition strategies

to application of cascades of tree transducers. Tables 4.4 and 4.5 summarize the available

methods of forward and backward application of cascades for recognizability-preserving

tree transducer classes.
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Algorithm 21 BACKWARD-COVER
1: inputs
2: t ∈ TΣ(A), where A ∩ Σ = ∅
3: wrtg G = (N,Σ,P,n0) in normal form, with no chain productions
4: n ∈ N
5: outputs
6: set Π of pairs {(φ,w) : φ a mapping pos(t)→ N and w ∈W}, each pair indicating a

successful run on t by productions in G, starting from n, and the weight of the run.
7: complexity
8: O(|P|size(t))

9: Πlast ← {((ε,n), 1)}
10: for all v ∈ pos(t) such that t(v) < A in pre-order do
11: Πv ← ∅

12: for all (φ,w) ∈ Πlast do
13: if G �M(G)/ for some wtt M and wrtg G then
14: G← BACKWARD-PRODUCE(M,G,G, φ(v))

15: for all φ(v) w′
−→ t(v)(n1, ...,nk) ∈ P do

16: Πv ← Πv ∪ {(φ ∪ {(vi,ni), 1 ≤ i ≤ k},w · w′)}
17: Πlast ← Πv
18: return Πlast

4.6 Decoding experiments

The main purpose of this chapter has been to present novel algorithms for performing

application. However, it is beneficial to demonstrate these algorithms on realistic data.

We thus demonstrate bucket brigade and on-the-fly backward application on a typical

NLP task cast as a cascade of wLNT. We adapted the Japanese-to-English translation

model of Yamada and Knight [136] by transforming it from an English tree-to-Japanese

string model to an English tree-to-Japanese tree model. The Japanese trees are unlabeled,

meaning they have syntactic structure but no node labels. We then cast this modified

model as a cascade of LNT tree transducers. We now describe the individual transducers

in more detail.
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Algorithm 22 BACKWARD-PRODUCE
1: inputs
2: linear wtt M = (Q,Σ,∆,R, q0),
3: wrtg G = (N,Σ,P,n0) in normal form with no chain productions
4: wrtg G′in = (N′in,∆,P

′

in,n
′

0)
5: n′ ∈ (Q ×N)
6: outputs
7: wrtg G′out = (N′out,∆,P

′

out,n
′

0) where G′in �M(G)/ G′out, and

n′ w
−→ t ∈ P′out ⇔ n′ w

−→ t ∈M(G)/

8: complexity
9: O(|R||P|r̃)

10: if n′ ∈ N′in then
11: return G′in
12: N′out ← N′in ∪ {n

′
}

13: P′out ← P′in
14: if n′ =⊥ then
15: for all σ ∈ Σwith rank k do
16: P′out ← P′out ∪ {⊥

1
−→ σ(⊥, ...,⊥)}

17: return G′out
18: Let n′ be of the form (q,n), where q ∈ Q and n ∈ N.
19: for all r of the form q.σ

w1
−−→ t in R where σ ∈ Σ(k) do

20: for all (φ,w2) ∈ BACKWARD-COVER(t,G,n) do
21: d1 ← d2 ← ...← dk ←⊥

22: for all v ∈ leaves(t) such that t(v) is of the form (q′, x) ∈ Q × Xk do
23: if φ(v) , ∅ then
24: di ← (q′, φ(v))
25: P′out ← P′out ∪ {(q,n)

w1 · w2
−−−−−→ σ(d1, ..., dk)}

26: return G′out

Rotation: The rotation transducer captures the reordering of subtrees such that the

leaves of the tree are transformed from English to Japanese word order. Individual

rules denote the likelihood of a particular sequence of sibling subtrees reordering in a

particular way. The structure of the English trees ensures that the maximum number of

siblings is four. Preterminals and English words are transformed as an identity, with no

extra weight incurred. There are 6,453 rules in the rotation transducer in our experimental

model. Some example rules are in Figure 4.8a.
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M  []LT []LNT []LNT
oc

√
× ×

√

ecp
√

× ×
√

bb
√ √ √ √

otf
√ √ √ √

Table 4.4: Transducer types and available methods of forward application of a cascade.
oc = offline composition, ecp = embed-compose-project, bb = custom bucket brigade
algorithm, otf = on the fly.

M  []T [][]LT []NT []LNT []LNT
oc

√
× × × ×

√

ecp
√ √ √ √ √ √

otf
√

×
√

×
√ √

Table 4.5: Transducer types and available methods of backward application of a cascade.
oc = offline composition, ecp = embed-compose-project, otf = on the fly.

Insertion: The insertion transducer captures the likelihood of inserting Japanese

function words into the reordered English sentence. Individual rules denote the likeli-

hood of inserting a function word to the left or right of a tree’s immediate subtrees but

do not specify what that word is (this is left for the translation transducer). Preterminals

and English words are transformed as an identity with no extra weight incurred, with

some English words receiving an annotation indicating they are not to be translated into

a null symbol in Japanese, based on structural constraints of the model. There are 8,122

rules in the insertion transducer in our experimental model. Some example rules are in

Figure 4.8b.

Translation: The translation transducer relabels all internal nodes of an English tree

with the symbol “X” and captures the likelihood of translating each English and inserted

word into a Japanese word or a null symbol, indicating there is no direct translation

of the English word.8 Individual rules that relabel with the symbol “X” have no extra

8Inserted words and specially annotated English words cannot translate into the null symbol.
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Q G A
— — O(no, 1, 1)

O(n, c) out[n] = 0

out[n]← c
G← BACKWARD-PRODUCE(G,M,G,n)
∀p : n w

−→ σ(k)(n1, ...,nk) ∈ G, k > 0
∀i ∈ 1 . . . k

O(ni,w · c)
∀p : n w

−→ α(0)
∈ G

I(n, p,w,w · c)

I(n, p,w, c) in[n] = 0, deriv[n] = ∅
in[n]← w, deriv[n]← p
return deriv if n = n0

—
in[n1] = w1, . . . , in[nk] = wk

I(n0, p,w ·
k∏

i=1

wi,w ·
k∏

i=0

wi)out[n] = w0

p : n w
−→ σ(k)(n1, ...,nk) ∈ G

Table 4.6: Deduction schema for the one-best algorithm of Pauls and Klein [108], gen-
eralized for a normal-form wrtg, and with on-the-fly discovery of productions. We are
presumed to have a wrtg G = (N,Σ,P,n0) that is a stand-in for some M(G)/, a priority
queue that can hold items of type I and O, prioritized by their cost, c, two N-indexed
tables of (initially 0-valued) weights, in and out, and one N-indexed table of (initially
null-valued) productions, deriv. In each row of this schema, the specified actions are
taken (inserting items into the queue, inserting values into the tables, discovering new
productions, or returning deriv) if the specified item is at the head of the queue and the
specified conditions of in, out, and deriv exist. The one-best hyperpath in G can be found
when deriv is returned by joining together productions in the obvious way, beginning
with deriv[n0].

JJ

x1 x2 x3

JJ

rDT.x1 rJJ.x2 rVB.x3

−→rJJ

VB

x1 x2 x3

VB

rNNPS.x1 rNN.x3 rVB.x2

−→rVB

“gentle” “gentle”−→t

(a) Rotation rules

NN

x1 x2

NN

INS iNN.x1 iNN.x2

−→iVB

NN

x1 x2

NN

iNN.x1 iNN.x2

−→iVB

NN

x1 x2

NN

iNN.x1 iNN.x2 INS

−→iVB

(b) Insertion rules

VB

x1 x2 x3

X

t.x1 t.x2 t.x3

−→t

“gentleman” j1−→t

“gentleman” EPS−→t

INS j1−→t

INS j2−→t

(c) Translation rules

Figure 4.8: Example rules from transducers used in decoding experiment. j1 and j2 are
Japanese words.
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weight incurred. There are 37,311 rules in the translation transducer in our experimental

model. Some example rules are in Figure 4.8c.

We added an English syntax language model to the cascade of transducers just

described to better simulate an actual machine translation decoding task. The language

model was cast as an identity wtt and thus fit naturally into the experimental framework.

In our experiments we tried several different language models to demonstrate varying

performance of the application algorithms. The most realistic language model was built

from a PCFG, where each rule captured the probability of a particular sequence of child

labels given a parent label. This model had 7,765 rules.

To demonstrate more extreme cases of the usefulness of the on-the-fly approach, we

built a language model that recognized exactly the 2,087 trees in the training corpus, each

with equal weight. It had 39,455 rules. Finally, to be ultra-specific, we included a form of

the “specific” language model just described, but only allowed the English counterpart

of the particular Japanese sentence being decoded in the language.

The goal in our experiments is to apply a single tree backward through the cascade

and find the 1-best path in the application wrtg. We evaluate based on the speed of each

approach: bucket brigade and on-the-fly. The algorithm we use to obtain this 1-best path

is a modification of the k-best algorithm of Pauls and Klein [108]. Our algorithm finds

the 1-best path in a wrtg and admits an on-the-fly approach. We present a schema for

this algorithm, analogous to the schemata shown in Pauls and Klein [108], in Table 4.6. 9

The results of the experiments are shown in Table 4.7. As can be seen, on-the-fly

application was generally faster than the bucket brigade, about double the speed per

9We only show the 1-best variant here but a k-best variant is easily obtained, in the manner shown by
Pauls and Klein [108].
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LM  M T/S
pcfg bucket 28s
pcfg otf 17s
exact bucket >1m
exact otf 24s
1-sent bucket 2.5s
1-sent otf .06s

Table 4.7: Timing results to obtain 1-best from application through a weighted tree trans-
ducer cascade, using on-the-fly vs. bucket brigade backward application techniques.
pcfg = model recognizes any tree licensed by a pcfg built from observed data, exact
= model recognizes each of 2,000+ trees with equal weight, 1-sent = model recognizes
exactly one tree.

sentence in the traditional experiment that used an English PCFG language model.

The results for the other two language models demonstrate more keenly the potential

advantage that can be had using an on-the-fly approach—the simultaneous incorporation

of information from all models allows application to be done more effectively than if each

information source is considered in sequence. In the “exact” case, where a very large

language model that simply recognizes each of the 2,087 trees in the training corpus is

used, the final application is so large that it overwhelms the resources of a 4gb MacBook

Pro. In this case, the on-the-fly approach is necessary to avoid running out of memory.

The “1-sent” case is presented to demonstrate the ripple effect caused by using on-the

fly. In the other two cases, a very large language model generally overwhelms the timing

statistics, regardless of the method being used. But a language model that represents

exactly one sentence is very small, and thus the effects of simultaneous inference are

readily apparent—the time to retrieve the 1-best sentence is reduced by two orders of

magnitude in this experiment.
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4.7 Backward application of wxLNTs to strings

Tree-to-string transducers are quite important in modern syntax NLP systems. We

frequently are given string data and want to transform it into a forest of trees by means

of some grammar or transducer. This is generally known as parsing, but from our

perspective, it is the inverse image of a tree-to-string transducer applied to a string.

Despite the change in nomenclature, though, we can take advantage of the rich parsing

literature in defining an algorithm for this problem. A good choice for a parsing strategy

is Earley’s algorithm [36], and we will look to Stolcke’s extension to the weighted case

[124] for guidance, though since we are required to build an entire parse chart, and

ultimately preserve weights from our input transducer, strictly speaking weights are not

needed in the application algorithm.

Stolcke’s presentation [124] builds a parse forest from a wcfg.10 Given a wcfg and a

string of k words, a hypergraph, commonly called a chart is built. The states in the chart

are represented as (p, v, i, j) tuples, where p is a wcfg production, v is a position, i.e., an

index into the right side of p, and i, j is a pair of integers, 0 ≤ i ≤ j ≤ k, signifying a range

of the input string. The hyperedges of the chart are unary or binary and are unlabeled.

For a unary edge, if the destination state of an edge is of the form (p, v, i, j) where v > 0,

then its source state is of the form (p, v − 1, i, j − 1). For a binary edge, the right source

state will be of the form (p′, v′, h, j), where p′ has as its left nonterminal the nonterminal

at the vth position of the right side of p, v′ is equal to the length of the right side of p′,

and i ≤ h ≤ j. The left source state will be of the form (p, v − 1, i, h). A state of the form

(p, 0, i, i) has no incoming hyperedges.

10We alter the presentation of indices somewhat from Stolcke’s approach but still use it for guidance.
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We can build a chart with a xLNTs and string in the same way as we build one

for a wcfg, treating a rule of the form q.y w
−→ g as if it were a production of the form

q w
−→ g′, where g′ is modified from g by replacing all (q, x) items with q. The left sides and

variables are ignored, however, not omitted. After the chart is formed, it is traversed top

down, and at each state q′ of the form (r, v, i, j) where r is of the form q.y w
−→ g and v is

equal to the length of g, a set of state sequences is formed, by appending, for each binary

edge arriving at q′, the right source state with each of the sequences formed from the left

source state. Terminal states form no sequences, and unary edges form the sequences

in their source state. Each of these sequences is assigned to the variable attached to the

original g, and this is used, with y, to form a production. Additionally, to reduce the

state space, all states formed from rules with the same left side, with positions at the right

extreme, and with the same covering span are merged. In this way the domain projection

is formed. Note that the result of this operation can then be the input to the backward

application of a wxLT, and by this we may accomplish bucket brigade application of a

cascade of wxLT, followed by a wxLNTs and a string.

Example 4.7.1 Consider the wxLNTs M1 from Example 2.4.3, whose rules are reproduced

in Figure 4.9a. To apply this transducer to the output string λ λ λ λ, first Earley’s

algorithm is used to form a parse chart, a portion of which is shown in Figure 4.10. Then,

the chart is explored from the top down and descendant state sequences are gathered at

each state that represents a fully-covered rule (such states are highlighted in Figure 4.10).

States representing rules with common left sides that cover the same span are merged

and the wrtg projected is depicted in Figure 4.9b.
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1. σ

γ

α x1

x2 x3

.1
−→ q2.x1 q2.x2 q2.x3q1

2. γ

x1 x2

.2
−→ q2.x1 q2.x2q2

3. β

α

.3
−→ λq2

4. α
.4
−→ λq2

(a) Rules from example xLNTs used for parsing, and originally seen in Figure 2.17.

1. σ

γ

α [q2, 0, 2]

[q2, 2, 3] [q2, 3, 4]

[q1, 0, 4] .1
−→

2. σ

γ

α [q2, 0, 1]

[q2, 1, 3] [q2, 3, 4]

[q1, 0, 4] .1
−→

3. γ

γ

α [q2, 0, 1]

[q2, 1, 2] [q2, 2, 4]

[q1, 0, 4] .1
−→

4. γ

[q2, 0, 1] [q2, 1, 2]

[q2, 0, 2] .2
−→

5. γ

[q2, 1, 2] [q2, 2, 3]

[q2, 1, 3] .2
−→

6. γ

[q2, 2, 3] [q2, 3, 4]

[q2, 2, 4] .2
−→

7. β

α

[q2, 0, 1] .3
−→

8. β

α

[q2, 1, 2] .3
−→

9. β

α

[q2, 2, 3] .3
−→

10. β

α

[q2, 3, 4] .3
−→

11. α[q2, 0, 1] .4
−→

12. α[q2, 1, 2] .4
−→

13. α[q2, 2, 3] .4
−→

14. α[q2, 3, 4] .4
−→

(b) Backward application rules extracted from the chart in Figure 4.10 after state merging.

Figure 4.9: Input wxLNTs and final backward application wrtg formed from parsing λ
λ λ λ, as described in Example 4.7.1.
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Figure 4.10: Partial parse chart formed by Earley’s algorithm applied to the rules in Figure
4.9a, as described in Example 4.7.1. A state is labeled by its rule id, covered position
of the rule right side, and covered span. Bold face states have their right sides fully
covered, and are thus the states from which application wrtg productions are ultimately
extracted. Dashed edges indicate hyperedges leading to sections of the chart that are not
shown.

(a) wst from Figure 4.2b with edge ids.

a:c/.6 R9

b:c/.7 R11

F

a:d/.4 R10

b:d/.3 R12
(b) wst from Figure 4.2c with
edge ids.

(c) Output string “c c” embedded in
an identity wst.

(d) Derivation wsa construc-
tion after input embed (Fig-
ure 4.2a) is composed with
first wst.

(e) Derivation wsa construction after
composition with second wst.

A D F G B D F H
B E F H

(f) Final derivation wsa construction
after composition with output embed
and projection.

Figure 4.11: Construction of a derivation wsa.
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4.8 Building a derivation wsa

As motivated in Section 4.1, another useful structure we may want to infer is a derivation

automaton (or grammar). Let’s return to the string world for a moment. Given a string

pair (i, o), a wst M and unique identifiers for each of the edges in M, a derivation wsa

is a wsa representing the (possibly infinite) sequences of edges in M that derive o from

i.11 It can be used by forward-backward training algorithms to learn weights on a wst

to maximize the likelihood of a string corpus [38]. Forming a derivation wsa is in fact

similar to forming an application wsa, with an additional relabeling to keep track of

edge ids. First, we embed i in an identity wst, I. We then compose I with M, but replace

the input label of every edge formed via the use of some wst edge with its id instead.

Then we compose this result with the embedding of o in an identity output wst, O. The

domain projection of the result is a wsa representing the sequences of wst ids needed to

derive o from i using the wst.

One may also want to form a derivation wsa for a cascade of wsts. In this case, the

edges of the derivation wsa will contain ids from each of the transducers in the cascade.

Again, the procedure is analogous to that used for forming an application wsa from

a cascade, and the three strategies (offline composition, bucket brigade, and on-the-fly)

each apply.12 Figure 4.11 shows the construction of a derivation wsa from the wst cascade

of Figure 4.2, now augmented with edge ids for ease of understanding.

11Derivation wsas are typically formed from unweighted wsts, but the generalization holds.
12Offline composition requires a bit of fancy bookkeeping to maintain edge ids. See Eisner [38].
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4.9 Building a derivation wrtg

Turning to the tree case, the reader may be pleasantly surprised to learn that the re-

strictions for application wrtg construction do not apply for basic derivation wrtg

construction—a derivation wrtg can be formed from a tree pair (i, o) and a wtt M of

the most general class allowed—wxT. An algorithm to do this was first proposed by

Graehl and Knight [55]. The theoretical justification for this is as follows: As in the

string case, if we can compose I, M, and O, where I and O are embeddings of I and O,

respectively, and perform the same kind of relabeling done for strings, we can form the

derivation wrtg.

First let us consider I = (Q,Σ,Σ,R, q0) and M = (Q′,Σ,R′, q′0). The standard embed-

ding of i forms a deterministic relabeling wtt. We can form I′ = (Q,Σ,Σ ∪ Υ,R ∪ RΥ, q0)

where Υ ∩ Σ = ∅ and Υ = {υi}, υi ∈ Υ
(i) for 0 ≤ i ≤ max(rk(σ)|σ ∈ Σ). The rules of RΥ are

defined as follows: For each σ ∈ Σ(k) and q ∈ Q, if there is no rule of the form q.σ w
−→ t in

R, add q.σ 1
−→ υk(q.x0, ..., q.xk) to RΥ. We then take the input alphabet of M to be Σ ∪ Υ.

It is clear that I′ is a deterministic and total relabeling wtt and that τI′ ; τM = τI; τM since

the only effect of augmenting I to I′ is to produce extra outputs that are not accepted by

M. Following the principles of Baker [6], Theorem 1, I′ ◦M ⊆ wxT, as I′ is total and de-

terministic. The composition can be modified to use rule ids on the input labels without

any problems, since the nature of the composition ensures that exactly one rule from M is

used to form a rule in I′ ◦M. Augmenting the composition with this replacement results

in a transducer of type wT, since an extended left side is replaced with a single symbol,
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denoting a rule id of M, with appropriate rank. Since O is in wLNT we can immediately

produce I′ ◦M ◦O, and by taking the domain projection we have a derivation wrtg.

A sufficient condition for forming a derivation wrtg for a cascade of wtts and a

training pair is that the members of the cascade preserve recognizability. Then we can

use a modification of the embed-compose-project approach to build the derivation wrtg.

Essentially, we modify the composition algorithm, Algorithm 13 from Section 2.3.3,

such that the traditional creation of a composition rule, at line 13, is altered by creating a

new symbol to replace y that contains the set of rules used to construct z (which may be

inferred fromθ, the mapping of tree positions to states) and has an appropriate rank. This

transducer will be deterministic and, with the addition of sufficient rules that match no

subsequent transducer, total, so we are ensured, by the conditions set forth by Baker [6],

that this wtt can be composed with the next wtt in the cascade. Note that no projection

or embedding is needed in this case. After the process has been repeated (unioning the

obtained rule sequences with the contents of the special symbols formed previously),

a projection may be taken, forming the derivation wrtg. The following example uses

the approach just described, though modifications of the on-the-fly algorithms in this

chapter can also be used for this construction, by simply adjoining the created rules with

placeholders for rule sequence information.

Example 4.9.1 Consider the wtts M1 = ({q}, Σ, ∆, R1, q) and M2 = ({r}, ∆, Γ, R2, r) where

Σ = {C, D}, ∆ = {H, J, E, F}, Γ = {U, V, S,K}, and R1 and R2 are presented in Figures

4.12a and 4.12b, respectively. We would like to build a derivation wrtg for the pair (D(C,

C), S(U, V)). Figure 4.13 shows productions in the intermediate application wrtgs using
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1. D

x1 x2

E

q.x1 q.x2

.1
−→q

2. D

x1 x2

F

q.x1 q.x2

.2
−→q

3. D

x1 x2

F

q.x2 q.x1

.3
−→q

4. C H.4
−→q

5. C J.5
−→q

(a) R1

6. E

x1 x2

K

r.x1 U r.x2

.6
−→r

7. E

x1 x2

S

r.x1 r.x2

.7
−→r

8. F

x1 x2

S

r.x1 r.x2

.8
−→r

9. H U.9
−→r

10. H V.01
−−→r

11. J U.02
−−→r

12. J V.03
−−→r

(b) R2

Figure 4.12: Input transducers for cascade training.
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• {}
2

x1 x2

D

n1.x1 n2.x2

1
−→n0 • {}

0 C1
−→n1

• {}
0 C1
−→n2

(a) Converted and embedded wrtg of input tree.

• {1}

x1 x2

E

n1q.x1 n2q.x2

.1
−→n0q

• {2}

x1 x2

F

n1q.x1 n2q.x2

.2
−→n0q

• {3}

x1 x2

F

n2q.x2 n1q.x1

.3
−→n0q

• {4} H.4
−→n1q

• {5} J.5
−→n1q

• {4} H.4
−→n2q

• {5} J.5
−→n2q

(b) Application onto M1.

• {1, 6}

x1 x2

K

n1qr.x1 U n2qr.x2

.06
−−→n0qr

• {2, 8, 1, 7}

x1 x2

S

n1qr.x1 n2qr.x2

.23
−−→n0qr

• {3, 8}

x1 x2

S

n2qr.x2 n1qr.x1

.24
−−→n0qr

• {4, 5, 9, 11} U.37
−−→n1qr

• {4, 5, 10, 12} V.019
−−−→n1qr

• {4, 5, 9, 11} U.37
−−→n2qr

• {4, 5, 10, 12} V.019
−−−→n2qr

(c) Application onto M2.

Figure 4.13: Progress of building derivation wrtg.
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• {2, 8, 1, 7}

n1qr n2qr

n0qr .23
−−→

• {3, 8}

n2qr n1qr

n0qr .24
−−→

• {4, 5, 9, 11}n1qr .37
−−→

• {4, 5, 10, 12}n1qr .019
−−−→

• {4, 5, 9, 11}n2qr .37
−−→

• {4, 5, 10, 12}n2qr .019
−−−→

Figure 4.14: Derivation wrtg after final combination and conversion.

embed-compose-project, but as discussed above, the derivation wrtg, which is depicted

in Figure 4.14, can be built using any valid application method.

4.10 Summary

We have presented, for the first time, algorithms for backward and forward application

of cascades of weighted extended top-down tree-to-tree and tree-to-string transducers

to tree grammar and string input. We have presented novel on-the-fly algorithms for

application of tree transducer cascades and we have demonstrated the performance of

these algorithms. We have also described how to use these algorithms to construct a

derivation grammar for training a cascade of tree transducers that uses the application

algorithms.
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Chapter 5

S R-AM M T

In this chapter we use a wxtst framework and the tree transducer training algorithm

described in [55, 56] for significant improvements in state-of-the-art syntax-based ma-

chine translation. Specifically, we present a method for improving word alignment that

employs a syntactically informed alignment model closer to the translation model than

commonly-used word alignment models. This leads to extraction of more useful lin-

guistic patterns and improved BLEU scores on translation experiments in Chinese and

Arabic. This work was first presented in [97] and was presented again as one component

in a presentation of EM-based data-manipulation techniques to improve syntax MT in

[132].

5.1 Methods of statistical MT

Roughly speaking, there are two paths commonly taken in statistical machine translation

(Figure 5.1). The idealistic path uses an unsupervised learning algorithm such as EM

[28] to learn parameters for some proposed translation model from a bitext training

corpus, and then directly translates using the weighted model. Some examples of the
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u n s u p e r v i s e dl e a r n i n g
t a r g e ts e n t e n c e s

s o u r c es e n t e n c e s
u n w e i g h t e dm o d e l w e i g h t e dm o d e l

p a t t e r n s( u n w e i g h t e dm o d e l )c o u n t i n ga n ds m o o t h i n g
w e i g h t e dm o d e l d e c o d e rs o u r c es e n t e n c e s

t a r g e ts e n t e n c e s
p a t t e r ne x t r a c t i o nt a r g e ts e n t e n c e ss o u r c es e n t e n c e s

V i t e r b ia l i g n m e n t s
d e c o d e rs o u r c es e n t e n c e s

t a r g e ts e n t e n c e s

Figure 5.1: General approach to idealistic and realistic statistical MT systems.

idealistic approach are the direct IBM word model [7, 51], the phrase-based approach

of Marcu and Wong [93], and the syntax approaches of Wu [134] and Yamada and

Knight [136]. Idealistic approaches are conceptually simple and thus easy to relate

to observed phenomena. However, as more parameters are added to the model the

idealistic approach has not scaled well, for it is increasingly difficult to incorporate large

amounts of training data efficiently over an increasingly large search space. Additionally,

the EM procedure has a tendency to overfit its training data when the input units have

varying explanatory powers, such as variable-size phrases or variable-height trees.

The realistic path also learns a model of translation, but uses that model only to obtain

Viterbi word-for-word alignments for the training corpus. The bitext and corresponding

alignments are then used as input to a pattern extraction algorithm, which yields a set of
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Figure 5.2: A (English tree, Chinese string) pair and three different sets of multilevel
tree-to-string rules that can explain it; the first set is obtained from bootstrap alignments,
the second from this paper’s re-alignment procedure, and the third is a viable, if poor
quality, alternative that is not learned.
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patterns or rules for a second translation model (which often has a wider parameter space

than that used to obtain the word-for-word alignments). Weights for the second model

are then set, typically by counting and smoothing, and this weighted model is used for

translation. Realistic approaches scale to large data sets and have yielded better BLEU

performance than their idealistic counterparts, but there is a disconnect between the first

model (hereafter, the alignment model) and the second (the translation model). Examples

of realistic systems are the phrase-based ATS system of Och and Ney [107], the phrasal-

syntax hybrid system Hiero [21], and the GHKM syntax system [47, 46]. For an alignment

model, most of these use the Aachen HMM approach [131], the implementation of IBM

Model 4 in GIZA++ [106] or, more recently, the semi-supervised EMD algorithm [42].

The two-model approach of the realistic path has undeniable empirical advantages

and scales to large data sets, but new research tends to focus on development of higher

order translation models that are informed only by low-order alignments. We would

like to add the analytic power gained from modern translation models to the underlying

alignment model without sacrificing the efficiency and empirical gains of the two-model

approach. By adding the syntactic information used in the translation model to our

alignment model we may improve alignment quality such that rule quality and, in turn,

system quality are improved. In the remainder of this work we show how a touch of

idealism can improve an existing realistic syntax-based translation system.
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5.2 Multi-level syntactic rules for syntax MT

Galley et al. [47] and Galley et al. [46] describe a syntactic translation model that

relates English trees to foreign strings via a tree-to-string transducer of class wxLNTs.

The model describes joint production of a (tree, string) pair via a non-deterministic

selection of weighted rules. Each rule has an English tree fragment with variables and a

corresponding foreign string fragment with the same variables. A series of rules forms

an explanation (or derivation) of the complete pair.

As an example, consider the parsed English and corresponding Chinese at the top

of Figure 5.2. The three columns underneath the example are different rule sequences

that can explain this pair; there are many other possibilities. Note how rules specify

rotation (e.g., R10, R4), direct translation (R12, R8), insertion and deletion (R11, R1), and

tree traversal (R6, R15). Note too that the rules explain variable-size fragments (e.g., R7

vs. R14) and thus the possible derivation trees of rules that explain a sentence pair have

varying sizes. The smallest such derivation tree has a single large rule (which does not

appear in Figure 5.2; we leave the description of such a rule as an exercise for the reader).

A string-to-tree decoder constructs a derivation forest of derivation trees where the right

sides of the rules in a tree, taken together, explain a candidate source sentence. It then

outputs the English tree corresponding to the highest-scoring derivation in the forest.
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5.3 Introducing syntax into the alignment model

We now lay the groundwork for a syntactically motivated alignment model. We begin

by reviewing an alignment model commonly seen in realistic MT systems and compare

it to a syntactically-aware alignment model.

5.3.1 The traditional IBM alignment model

IBM Model 4 [16] learns a set of 4 probability tables to compute p( f |e) given a foreign

sentence f and its target translation e via the following (greatly simplified) generative

story:

1. A fertility y for each word ei in e is chosen with probability p f ert(y|ei).

2. A null word is inserted next to each fertility-expanded word with probability pnull.

3. Each token ei in the fertility-expanded word and null string is translated into some

foreign word fi in f with probability ptrans( fi|ei).

4. The position of each foreign word fi that was translated from ei is changed by ∆

(which may be positive, negative, or zero) with probability pdistortion(∆|A(ei),B( fi)),

whereA andB are functions over the source and target vocabularies, respectively.

Brown et al. [16] describe an EM algorithm for estimating values for the four tables

in the generative story. However, searching the space of all possible alignments is

intractable for EM, so in practice the procedure is bootstrapped by models with narrower

search space such as IBM Model 1 [16] or Aachen HMM [131].
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5.3.2 A syntax re-alignment model

Now let us contrast this commonly used model for obtaining alignments with a syntac-

tically motivated alternative. We recall the rules described in Section 5.2. Our model

learns a single probability table to compute p(etree, f ) given a foreign sentence f and a

parsed target translation etree. In the following generative story we assume a starting

variable with syntactic type v.

1. Choose a rule r to replace v, with probability prule(r|v).

2. For each variable with syntactic type vi in the partially completed (tree, string) pair,

continue to choose rules ri with probability prule(ri|vi) to replace these variables until

there are no variables remaining.

In Section 5.5.1 we discuss an EM learning procedure for estimating these rule prob-

abilities.

As in the IBM approach, we must mitigate intractability by limiting the parameter

space searched, which is potentially much wider than in the word-to-word case. We

would like to supply to EM all possible rules that explain the training data, but this

implies a rule relating each possible tree fragment to each possible string fragment,

which is infeasible. We follow the approach of bootstrapping from a model with a

narrower parameter space as is done by, e.g., Och and Ney [106] and Fraser and Marcu

[42].

To reduce the model space we employ the rule acquisition technique of Galley et al.

[47], which obtains rules given a (tree, string) pair as well as an initial alignment between

them. We are agnostic about the source of this bootstrap alignment and in Section 5.5
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present results based on several different bootstrap alignment qualities. We require an

initial set of alignments, which we obtain from a word-for-word alignment procedure

such as GIZA++ or EMD. Thus, we are not aligning input data, but rather re-aligning it

with a syntax model.

5.4 The appeal of a syntax alignment model

Consider the example of Figure 5.2 again. The leftmost derivation is obtained from the

bootstrap alignment set. This derivation is reasonable but there are some poorly moti-

vated rules, from a linguistic standpoint. The third word in the Chinese sentence roughly

means “the two shores” in this context, but the rule R7 learned from the alignment in-

correctly includes “between”. However, other sentences in the training corpus have the

correct alignment, which yields rule R16. Meanwhile, rules R13 and R14, learned from

yet other sentences in the training corpus, handle the second and fifth Chinese words

(which, as a unit, translates to “in between”), thus allowing the middle derivation.

EM distributes rule probabilities in such a way as to maximize the probability of the

training corpus. It thus prefers to use one rule many times instead of several different

rules for the same situation over several sentences, if possible. R7 is a possible rule in 46

of the 329,031 sentence pairs in the training corpus, while R16 is a possible rule in 100

sentence pairs. Well-formed rules are more usable than ill-formed rules and the partial

alignments behind these rules, generally also well-formed, become favored as well. The

top row of Figure 5.3 contains an example of an alignment learned by the bootstrap

alignment model that includes an incorrect link. Rule R24, which is extracted from this
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
 

C A
T NIST 2002 short 925 696
T NIST 2003 919 663

Table 5.1: Tuning and testing data sets for the MT system described in Section 5.5.2.

 GIZA  - 
E  C     

9,864,294 7,520,779
baseline 19,138,252 39.08 37.77

initial 18,698,549 39.49 38.39
adjusted 26,053,341 39.76 38.69

Table 5.2: A comparison of Chinese BLEU performance between the GIZA baseline (no
re-alignment), re-alignment as proposed in Section 5.3.2, and re-alignment as modified
in Section 5.5.4.

alignment, is a poor rule. A set of commonly seen rules learned from other training

sentences provide a more likely explanation of the data, and the consequent alignment

omits the spurious link.

5.5 Experiments

In this section, we describe the implementation of our semi-idealistic model and our

means of evaluating the resulting re-alignments in an MT task.

5.5.1 The re-alignment setup

We begin with a training corpus of Chinese-English and Arabic-English bitexts, the

English side parsed by a reimplementation of the standard Collins model [9]. In order to

acquire a syntactic rule set, we also need a bootstrap alignment of each training sentence.

We use an implementation of the GHKM algorithm [47] to obtain a rule set for each

bootstrap alignment.
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Now we need an EM algorithm for learning the parameters of the rule set that

maximize
∏

corpus
p(tree, string). Such an algorithm is presented by Graehl et al. [56]. The

algorithm consists of two components: D, which is a procedure for constructing a

packed forest of derivation trees of rules that explain a (tree, string) bitext corpus given

that corpus and a rule set, and T, which is an iterative parameter-setting procedure.

We initially attempted to use the top-down D algorithm of Graehl et al. [56], but

as the constraints of the derivation forests are largely lexical, too much time was spent on

exploring dead-ends. Instead we build derivation forests using the following sequence

of operations:

1. Binarize rules using the synchronous binarization algorithm for tree-to-string trans-

ducers described by Zhang et al. [138].

2. Construct a parse chart with a CKY parser simultaneously constrained on the

foreign string and English tree, similar to the bilingual parsing of Wu [135] 1.

3. Recover all reachable edges by traversing the chart, starting from the topmost entry.

Since the chart is constructed bottom-up, leaf lexical constraints are encountered

immediately, resulting in a narrower search space and faster running time than the top-

down D algorithm for this application. Derivation forest construction takes around

400 hours of cumulative machine time (4-processor machines) for Chinese. The actual

running of EM iterations (which directly implements the T algorithm of Graehl et

al. [56]) takes about 10 minutes, after which the Viterbi derivation trees are directly

1In the cases where a rule is not synchronous-binarizable standard left-right binarization is performed
and proper permutation of the disjoint English tree spans must be verified when building the part of the
chart that uses this rule.
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 GIZA  - 
E  C     

9,864,294 7,520,779
baseline 19,138,252 39.08 37.77

re-alignment 26,053,341 39.76 38.69

221,835,870 203,181,379
baseline 23,386,535 39.51 38.93

re-alignment 33,374,646 40.17 39.96
(a) Chinese re-alignment corpus has 9,864,294 English and 7,520,779 Chinese words.

 GIZA  - 
E  A     

4,067,454 3,147,420
baseline 2,333,839 47.92 47.33

re-alignment 2,474,737 47.87 47.89

168,255,347 147,165,003
baseline 3,245,499 49.72 49.60

re-alignment 3,600,915 49.73 49.99
(b) Arabic re-alignment corpus has 4,067,454 English and 3,147,420 Arabic words.

Table 5.3: Machine Translation experimental results evaluated with case-insensitive
BLEU4.

recoverable. The Viterbi derivation tree tells us which English words produce which

Chinese words, so we can extract a word-to-word alignment from it. We summarize the

approach described in this paper as:

1. Obtain bootstrap alignments for a training corpus using GIZA++.

2. Extract rules from the corpus and alignments using GHKM, noting the partial

alignment that is used to extract each rule.

3. Construct derivation forests for each (tree, string) pair, ignoring the alignments, and

run EM to obtain Viterbi derivation trees, then use the annotated partial alignments

to obtain Viterbi alignments.

4. Use the new alignments as input to the MT system described below.
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5.5.2 The MT system setup

A truly idealistic MT system would directly apply the rule weight parameters learned

via EM to a machine translation task. As mentioned in Section 5.1, we maintain the two-

model, or realistic approach. Below we briefly describe the translation model, focusing

on comparison with the previously described alignment model. Galley et al. [46] provide

a more complete description of the translation model and DeNeefe et al. [31] provide a

more complete description of the end-to-end translation pipeline.

Although in principle the re-alignment model and translation model learn parameter

weights over the same rule space, in practice we limit the rules used for re-alignment

to the set of smallest rules that explain the training corpus and are consistent with the

bootstrap alignments. This is a compromise made to reduce the search space for EM. The

translation model learns multiple derivations of rules consistent with the re-alignments

for each sentence, and learns weights for these by counting and smoothing. A dozen

other features are also added to the rules. We obtain weights for the combinations of the

features by performing minimum error rate training [105] on held-out data. We then use

a CKY decoder to translate unseen test data using the rules and tuned weights. Table 5.1

summarizes the data used in tuning and testing.

5.5.3 Initial results

An initial re-alignment experiment shows a reasonable rise in BLEU scores from the

baseline (Table 5.2), but closer inspection of the rules favored by EM implies we can do

even better. EM has a tendency to favor few large rules over many small rules, even when
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     

C-E
baseline 55,781,061 41.51 40.55

EMD re-align 69,318,930 41.23 40.55

A-E
baseline 8,487,656 51.90 51.69

EMD re-align 11,498,150 51.88 52.11

Table 5.4: Re-alignment performance with semi-supervised EMD bootstrap alignments.

the small rules are more useful. Referring to the rules in Figure 5.2, note that possible

derivations for translating between “taiwan ’s” and the first word in the Chinese sentence

are R2, R11-R12, and R17-R18. Clearly the third derivation is not desirable, and we do

not discuss it further. Between the first two derivations, R11-R12 is preferred over R2,

as the conditioning for possessive insertion is not related to the specific Chinese word

being inserted. Of the 1,902 sentences in the training corpus where this pair is seen,

the bootstrap alignments yield the R2 derivation 1,649 times and the R11-R12 derivation

0 times. Re-alignment does not change the result much; the new alignments yield the

R2 derivation 1,613 times and again never choose R11-R12. The rules in the second

derivation themselves are not rarely seen—R11 is in 13,311 forests other than those where

R2 is seen, and R12 is in 2,500 additional forests. EM gives R11 a probability of e−7.72—

better than 98.7% of rules, and R12 a probability of e−2.96. But R2 receives a probability

of e−6.32 and is preferred over the R11-R12 derivation, which has a combined probability

of e−10.68.

5.5.4 Making EM fair

The preference for shorter derivations containing large rules over longer derivations

containing small rules is due to a general tendency for EM to prefer derivations with

few atoms. Marcu and Wong [93] note this preference but consider the phenomenon a
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feature, rather than a bug. Zollmann and Sima’an [139] combat the overfitting aspect for

parsing by using a held-out corpus and a straight maximum likelihood estimate, rather

than EM. We take a modeling approach to the phenomenon.

As the probability of a derivation is determined by the product of its atom probabil-

ities, longer derivations with more probabilities to multiply have an inherent disadvan-

tage against shorter derivations, all else being equal. EM is an iterative procedure and

thus such a bias can lead the procedure to converge with artificially raised probabilities

for short derivations and the large rules that comprise them. The relatively rare appli-

cability of large rules (and thus lower observed partial counts) does not overcome the

inherent advantage of large coverage. To combat this, we introduce size terms into our

generative story, ensuring that all competing derivations for the same sentence contain

the same number of atoms:

1. Choose a rule size s with cost csize(s)s−1.

2. Choose a rule r (of size s) to replace the start symbol with probability prule(r|s, v).

3. For each variable in the partially completed (tree, string) pair, continue to choose

sizes followed by rules, recursively to replace these variables until there are no

variables remaining.

This generative story changes the derivation comparison from R2 vs R11-R12 to S2-R2

vs R11-R12, where S2 is the atom that represents the choice of size 2 (the size of a rule

in this context is the number of non-leaf and non-root nodes in its tree fragment). Note

that the variable number of inclusions implied by the exponent in the generative story

above ensures that all derivations have the same size. For example, a derivation with
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one size-3 rule, a derivation with one size-2 and one size-1 rule, and a derivation with

three size-1 rules would each have three atoms. With this revised model that allows for

fair comparison of derivations, the R11-R12 derivation is chosen 1636 times, and S2-R2

is not chosen. R2 does, however, appear in the translation model, as the expanded rule

extraction described in Section 5.5.2 creates R2 by joining R11 and R12.

The probability of size atoms, like that of rule atoms, is decided by EM. The revised

generative story tends to encourage smaller sizes by virtue of the exponent. This does

not, however, simply ensure the largest number of rules per derivation is used in all

cases. Ill-fitting and poorly-motivated rules such as R22, R23, and R24 in Figure 5.2

are not preferred over R16, even though they are smaller. However, R14 and R16 are

preferred over R7, as the former are useful rules. Although the modified model does

not sum to 1, it leads to an improvement in BLEU score, as can be seen in the last row

of Table 5.2.

5.5.5 Results

We performed primary experiments on two different bootstrap setups in two languages:

the initial experiment uses the same data set for the GIZA++ initial alignment as is

used in the re-alignment, while an experiment on better quality bootstrap alignments

uses a much larger data set. For each bootstrapping in each language we compared the

baseline of using these alignments directly in an MT system with the experiment of using

the alignments obtained from the re-alignment procedure described in Section 5.5.4. For

each experiment we report: the number of rules extracted by the expanded GHKM

algorithm of Galley et al. [46] for the translation model, converged BLEU scores on the

155



tuning set, and finally BLEU performance on the held-out test set. Data set specifics for

the GIZA++ bootstrapping and BLEU results are summarized in Table 5.3.

5.5.6 Discussion

The results presented demonstrate we are able to improve on unsupervised GIZA++

alignments by about 1 BLEU point for Chinese and around 0.4 BLEU point for Arabic

using an additional unsupervised algorithm that requires no human aligned data. If

human-aligned data is available, the EMD algorithm provides higher baseline alignments

than GIZA++ that have led to better MT performance [42]. As a further experiment we

repeated the experimental conditions from Table 5.3, this time bootstrapped with the

semi-supervised EMD method, which uses the larger bootstrap GIZA corpora described

in Table 5.3 and an additional 64,469/48,650 words of hand-aligned English-Chinese

and 43,782/31,457 words of hand-aligned English-Arabic. The results of this advanced

experiment are in Table 5.4. We show a 0.42 gain in BLEU for Arabic, but no movement

for Chinese. We believe increasing the size of the re-alignment corpora will increase

BLEU gains in this experimental condition, but leave those results for future work.

We can see from the results presented that the impact of the syntax-aware re-

alignment procedure of Section 5.3.2, coupled with the addition of size parameters to the

generative story from Section 5.5.4 serves to remove links from the bootstrap alignments

that cause less useful rules to be extracted, and thus increase the overall quality of the

rules, and hence the system performance. We thus see the benefit to including syntax in

an alignment model, bringing the two models of the realistic machine translation path

somewhat closer together.
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5.6 Conclusion

We have described a method for improving state-of-the-art syntax machine translation

performance by casting a complicated mt system as a wxLNTs and employing transducer

training algorithms to improve word alignment. This chapter demonstrates the real,

practical gains suggested in Chapter 1.

157



Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNNP.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNPB.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNNP.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

R15:

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNPB.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNPB.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNNP.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

R11:

R24:

R25:

R26:

R28:

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNNP.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNPB.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

Running Author Running Title

NP-C

NPB

NPB

NNP

taiwan

POS

’s

NN

surplus

PP

IN

in

NP-C

NPB

NN

trade

PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2

MIDDLE

qNPB NPB

NNP

taiwan

POS

’s

TAIWAN

qPP PP

x1 x2

qIN.x1 qNP-C.x2
qIN IN

in
IN

qNP-C NP-C

x1 x2

qPP.x2 qNPB.x1
qPP PP

IN

between

NP-C

NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

qNPB NPB

x1

qNN.x1
qNN NN

trade
TRADE

qNN NN

surplus
SURPLUS

qNP-C NP-C

NPB

x1 x2

x3

qNPB.x1 qPP.x3 qNN.x2
qNPB NPB

x1 POS

’s

qNNP.x1

qNNP NNP

taiwan
TAIWAN

qPP PP

IN

in

x1

qNP-C.x1

IN MIDDLE

qPP PP

IN

between

x1

qNP-C.x1
qNP-C NP-C

x1

qNPB.x1

qNPB NPB

DT

the

CD

two

NNS

shores

TWO-SHORES

Figure 1

The figure I want in the thesis

1

R15:

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

R25:

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

R27:

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

Running Author Running Title

S-C

NP-C

NPB

NNP

guangxi

POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

GUANGXI OUTSIDE-WORLD OPENING-UP

qS-C S-C

NP-C

NPB

x1 POS

’s

VP

VBG

opening

PRT

RP

up

PP

TO

to

NP-C

NPB

DT

the

JJ

outside

NN

world

qNNP.x1

OUTSIDE-WORLD OPENING-UP

qNNP NNP

guangxi
GUANGXI

qS-C S-C

x1 x2

qNP-C.x1 qVP.x2

qPP PP

TO

to

x1

qNP-C.x1
qVP VP

VBG

opening

PRT

RP

up

x1

qPP.x1

OPENING-UP

qNPB NPB

DT

the

JJ

outside

NN

world

OUTSIDE-WORLD

Figure 3

The third figure I want in the thesis

3

R29:

Figure 5.3: The impact of a bad alignment on rule extraction. Including the alignment
link indicated by the dotted line in the example leads to the rule set in the second row.
The re-alignment procedure described in Section 5.3.2 learns to prefer the rule set at
bottom, which omits the bad link.
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Chapter 6

T: A T T T

In this chapter we describe Tiburon, a toolkit for manipulating weighted tree transducers

and grammars. Tiburon contains implementations of many of the algorithms presented

in previous chapters and is designed to be fairly intuitive and easy to use. We also place

Tiburon in the context of other transducer and automata toolkits and software.

6.1 Introduction

The development of well-founded models of natural language processing applications

has been greatly accelerated by the availability of toolkits for finite-state automata. The

influential observation of Kaplan & Kay, that cascades of phonological rewrite rules

could be expressed as regular relations (equivalent to finite-state transducers) [64], was

exploited by Koskenniemi in his development of the two-level morphology and accom-

panying system for its representation [80]. This system, which was a general program

for analysis and generation of languages, pioneered the field of finite-state toolkits [68].

Successive versions of the two-level compiler, such as that written by Karttunen and

others at Xerox [67], were used for large-scale analysis applications in many languages
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[68]. Continued advances, such as work by Karttunen in intersecting composition [71]

and replacement [65, 66], eventually led to the development of the Xerox finite-state

toolkit, which superseded the functionality and use of the two-level tools [68].

Meanwhile, interest in adding uncertainty to finite-state models grew alongside

increased availability of large datasets and increased computational power. Ad-hoc

methods and individual implementations were developed for integrating uncertainty

into finite-state representations [115, 86], but the need for a general-purpose weighted

finite-state toolkit was clear [103]. Researchers at AT&T led the way with their FSM

Library [102] which represented weighted finite-state automata by incorporating the

theory of semirings over rational power series cleanly into the existing automata theory.

Other toolkits, such as van Noord’s FSA utilities [130], the RWTH toolkit [62], and the

USC/ISI Carmel toolkit [53], provided additional interfaces and utilities for working with

weighted finite-state automata. As in the unweighted case, the availability of this soft-

ware led to many research projects that took advantage of pre-existing implementations

[61, 129, 78] and the development of the software led to the invention of new algorithms

and theory [109, 99].

As has been described in Chapter 1, however, none of these toolkits are extendable to

recognize syntactic structures. GRM, an extension of the AT&T toolkit that uses approx-

imation theory to represent higher-complexity structure such as context-free grammars

in the weighted finite-state string automata framework, was useful for handling certain

representations [3], but a tree automata framework is required to truly capture tree mod-

els. Additionally, the incorporation of weights is crucial for modern natural language

processing needs. Thus, contributions such as Timbuk [50], a toolkit for unweighted
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finite state tree automata that has been used for cryptographic analysis, and MONA [58],

an unweighted tree automata tool aimed at the logic community, were insufficient for

our needs.

Knight and Graehl [76] put forward the case for the top-down tree automata theory

of Rounds [116] and Thatcher [127] as a logical sequel to weighted string automata

for NLP. Additionally, as Knight and Graehl mention [76], most of the desired general

operations in a general weighted finite-state toolkit are applicable to top-down tree

automata. Probabilistic tree automata were first proposed by Magidor and Moran [87].

Weighted tree transducers were first described by Fülöp and Vogler [44] as an operational

representation of tree series transducers, first introduced by Kuich [82].

We present Tiburon, a toolkit designed in the spirit of its predecessors but with

the tree, not the string, as its basic data structure and weights inherent in its operation.

Tiburon is designed to be easy to construct automata and work with them—after reading

this chapter a linguist with no computer science background or a computer scientist

with only the vaguest notions of tree automata should be able to write basic acceptors

and transducers. To achieve these goals we have maintained simplicity in data format

design, such that acceptors and transducers are very close to the way they appear in tree

automata literature. We also provide a small set of generic but powerful operations that

allow robust manipulation of data structures with simple commands. In subsequent

sections we present an introduction to the formats and operations in the Tiburon toolkit

and demonstrate the powerful applications that can be easily built. Tiburon was first

introduced in [96].

161



6.2 Getting started

Tiburon is written in Java and is distributed as a Java archive file (jar) with a simple bash

wrapping script. After downloading the software, the command

% ./tiburon

produces output that looks like

This is Tiburon, version 1.0

Error: Parameter ’infiles’ is required.

Usage: tiburon

[-h|--help] (-e|--encoding) <encoding>

(-m|--semiring) <srtype> [--leftapply]

[--rightapply] [-b|--batch] [(-a|--align) <align>]

[-l|--left] [-r|--right] [-n|--normalizeweight]

[--no-normalize] [--removeloops] [--normform]

[(-p|--prune) <prune>] [(-d|--determinize) <determ>]

[(-t|--train) <train>] [(-x|--xform) <xform>]

[--training-deriv-location <trainderivloc>]

[--conditional] [--no-deriv] [--randomize]

[--timedebug <time>] [-y|--print-yields]

[(-k|--kbest) <kbest>] [(-g|--generate) <krandom>]

[-c|--check] [(-o|--outputfile) <outfile>] infiles1

infiles2 ... infilesN
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The salient features of this output are that Tiburon was invoked, the program expected

some input files, and the usage statement was displayed. Since input files are crucial

to Tiburon’s operation, we discuss them next. There are several file types Tiburon uses:

wrtg, wcfg, wxtt, wxtst, and batch. With the exception of the batch file, each of these files

corresponds to a formal structure described in Chapter 2. We describe these files next.

6.3 Grammars

In this section we describe file formats and operations on grammars, the wrtgs that

recognize tree languages and the wcfgs that recognize context-free string languages.

6.3.1 File formats

Both kinds of grammar discussed in this thesis have a similar formal structure: (N,Σ,P,n0)1,

though Σ and P have somewhat different meanings. Consequently, the grammar files,

wrtg and wcfg, both have a similar overall format:2

<n0>

<prd>+

where <n0> is the start nonterminal and each <prd> is a member of P. A nonterminal

can be most any alphanumeric sequence. To be safe, it should not contain the following

reserved characters:3

. ( ) # @ % >

1We previously used ∆ for the terminal alphabet of a wcfg, but this is an issue of terminology only
2We use a BNF-like syntax, but hope the reader will rely on the examples that follow for greater clarity.
3The file parser for Tiburon is brittle and if you try to break it, you will probably succeed.
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The format of a production, <prd> is:

<nterm> "->" <rhs> ["#" <wgt>] ["@" <tie>]

where <nterm> is a nonterminal, <wgt> is a real number, and <tie> is an integer. Ties are

rarely used and will be discussed later. If the file is a wrtg, then <rhs> has the following

format:

<nterm> | <sym> | <sym>"("<rhs>+")"

where <sym> is a member of Σ and is subject to the same definitional constraints as the

nonterminals. If the file is a cfg, then <rhs> has the following format:

"*e*" | (<nterm>|<sym>)+

Note that the nonterminal and terminal sets are thus defined implicitly; all nonter-

minals must appear as left sides of productions at least once, and the nonterminal and

terminal alphabets must not coincide.

The symbol % denotes a comment, and all characters after this symbol to the end of

the line are ignored, with one exception. Since a file can be ambiguously a wcfg or a

wrtg, if the initial line of the file is one of:

% TYPE CFG

% TYPE RTG

then that type is presumed. It is best to further explain these formats with some examples,

which are in Figure 6.1.

We will later discuss training, so we now describe batch files appropriate for training

wrtgs and wcfgs. The format for batch files is
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q3

q3 -> A(q1 q1) # .25

q3 -> A(q3 q2) # .25

q3 -> A(q2 q3) # .25

q3 -> B(q2) # .25

q2 -> A(q2 q2) # .25

q2 -> A(q1 q3) # .25

q2 -> A(q3 q1) # .25

q2 -> B(q1) # .25

q1 -> A(q3 q3) # .025

q1 -> A(q1 q2) # .025

q1 -> A(q2 q1) # .025

q1 -> B(q3) # .025

q1 -> C # .9

(a) three.rtg is a wrtg that recognizes
trees with size divisible by three.

q

q -> np vp # 1

pp -> prep np # 1

vp -> vb do # 1

nn -> boy # .4

nn -> monkey # .1

nn -> clown # .5

np -> dt nn # .5

np -> dt nn pp # .5

dt -> the # 1

vb -> ran # 1

do -> *e* # .9

do -> home # .1

prep -> with # .6

prep -> by # .4

(b) ran.cfg is a wcfg that recognizes an infinite language.

qe

qe -> A(qe qo) # .1

qe -> A(qo qe) # .8

qe -> B(qo) # .1

qo -> A(qo qo) # .6

qo -> A(qe qe) # .2

qo -> B(qe) # .1

qo -> C # .1

(c) even.rtg is a wrtg that recognizes
trees with size divisible by two.

q

q -> S(subj vb obj)

q -> S(subj likes obj)

obj -> candy

vb -> likes

vb -> hates

subj -> John

subj -> Stacy

(d) candy.rtg is a rtg that recognizes a finite language. It
is not in normal form or deterministic.

TOP

S -> S-C , NP-C VP

S -> NP-C VP

S -> ADVP NP-C VP

S -> NP-C ADVP VP

...

NP-C -> NPB

NP-C -> NPB , VP

NP-C -> NPB NP

...
(e) Portion of train.cfg, a cfg used for
training.

% TYPE RTG

qS_TOP+

qS_TOP+ -> qS_TOP # .2

qS_TOP+ -> qS # 0.8

qS -> S(qNP_S+ : qVP_S+ EOL) # 0.0009

qS -> S(qNP_S+ qVP_S+ : EOL) # 0.0010

qS -> S(qNP_S+ DT qVP_S+ EOL) # 0.0005

...

qS_TOP -> S(qNP_S+ , qVP_S+ EOL) # 0.0258

...

(f) Portion of train.rtg, a wrtg used for training.

Figure 6.1: Example wrtg and wcfg files used to demonstrate Tiburon’s capabilities.
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(<count>

<item>)+

|

(<item>)+

A batch file for training wrtgs is a file of trees. The format for <item> in this case is:

<sym> | <sym>"("<item>+")"

A batch file for training wcfgs is a file of strings. The format for <item> in this case is:

<sym>+

Here is a portion of a batch file of strings:

DT VBN NNS RB MD VB NNS TO VB NNS IN NNS RBR CC RBR RB EOL

IN PRP$ NNS TO VB RP IN DT NNS , DT NN RB MD VB DT NN EOL

NNS WP VBP TO VB DT JJ NN MD VB PRP$ NNS IN NNP , PRP VBD EOL

Here is a portion of a batch file of trees:

TOP(S(NP-C(NPB(NNP NNP)) VP(VBZ NP-C(NPB(NNP))) EOL))

TOP(S(NP-C(NPB(DT JJ NN)) VP(MD VP-C(VB ADJP(JJ NP(NPB(NNP CD))))) EOL))

TOP(S(NP-C(NPB(DT NN NN)) VP(VBZ RB VP-C(VBN VP-C(VBN))) EOL))

6.3.2 Commands using grammar files

If you write any of the example grammars in Figure 6.1 as a plain text file and then call

Tiburon with that file as an argument, the contents of that file, minus any comments, and
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with weights of 1 in place if no weight is specified, will be returned. If there is a syntax

error, this will be reported instead. Here is an example of Tiburon reading candy.rtg,

from Figure 6.1d:

tiburon candy.rtg

This is Tiburon, version 1.0

q

q -> S(subj vb obj) # 1.000000

q -> S(subj likes obj) # 1.000000

obj -> candy # 1.000000

vb -> likes # 1.000000

vb -> hates # 1.000000

subj -> John # 1.000000

subj -> Stacy # 1.000000

Tiburon automatically places the weight 1 on unweighted productions. The --randomize

makes Tiburon randomly choose some weights, which can be useful in debugging sce-

narios:

tiburon --randomize candy.rtg

This is Tiburon, version 1.0

q

q -> S(subj vb obj) # 0.357130

q -> S(subj likes obj) # 0.362367

obj -> candy # 0.291670
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vb -> likes # 0.280298

vb -> hates # 0.686882

subj -> John # 0.671051

subj -> Stacy # 0.377440

Since we often want to work with probabilistic grammars, where the sum of weights

of productions with a common left nonterminal is 1, we could have also enforced the

weights to be normalized by adding the -n flag:

tiburon --randomize -n candy.rtg

This is Tiburon, version 1.0

q

q -> S(subj vb obj) # 0.496361

q -> S(subj likes obj) # 0.503639

obj -> candy # 1.000000

vb -> likes # 0.289810

vb -> hates # 0.710190

subj -> John # 0.640016

subj -> Stacy # 0.359984

The -k <kbest> option, where <kbest> is an integer, returns the trees recognized by

the <kbest> highest weighted paths, or all of the paths with placeholder lines if there

are not sufficient paths. This command, too, can be strung together with other options.

Note in the following example that a new random weighting is chosen before the trees

are generated, and that there are only six paths in the grammar.
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tiburon --randomize -n -k 10 candy.rtg

This is Tiburon, version 1.0

Warning: returning fewer trees than requested

S(Stacy likes candy) # 0.235885

S(Stacy likes candy) # 0.228522

S(Stacy hates candy) # 0.151262

S(John likes candy) # 0.147251

S(John likes candy) # 0.142655

S(John hates candy) # 0.094425

0

0

0

0

The -g <grand> option, where <grand> is an integer, randomly follows <grand>

paths and returns the strings or trees recognized by them. We show an example of this

on the wcfg ran.cfg.

./tiburon -g 5 ran.cfg

This is Tiburon, version 1.0

the clown with the boy ran home # 0.001435

the boy by the monkey ran home # 0.000191

the clown by the clown ran home # 0.002500

the clown ran home # 0.011957
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the monkey with the boy by the clown with the clown ran # 0.000043

The -y flag prints the yield of trees as a string and is combined with -k or -g options.

It only has any effect with wrtgs.

tiburon -yk 5 three.rtg

This is Tiburon, version 1.0

C C # 0.202500

C # 0.056250

C C C # 0.011391

C C C # 0.011391

C C C # 0.011391

We can convert wrtgs to wcfgs by simply replacing production right side trees with

yield strings. We can also convert wcfgs to wrtgs (provided they do not have ε pro-

ductions) by introducing symbols, typically repurposing nonterminal names for that

purpose. The -x flag provides this functionality—in the first example that follows the ε

production from ran.cfgwas replaced with the production do -> away # .9 to demon-

strate the feature, forming the file ran.noeps.cfg:

tiburon -x RTG ran.noeps.cfg

This is Tiburon, version 1.0

q_q

q_q -> q(q_np q_vp) # 1.000000

q_dt -> dt(the) # 1.000000

170



q_pp -> pp(q_prep q_np) # 1.000000

q_vb -> vb(ran) # 1.000000

q_vp -> vp(q_vb q_do) # 1.000000

q_np -> np(q_dt q_nn) # 0.500000

q_np -> np(q_dt q_nn q_pp) # 0.500000

q_nn -> nn(boy) # 0.400000

q_nn -> nn(monkey) # 0.100000

q_nn -> nn(clown) # 0.500000

q_prep -> prep(with) # 0.600000

q_prep -> prep(by) # 0.400000

q_do -> do(away) # 0.900000

q_do -> do(home) # 0.100000

tiburon -x CFG even.rtg

This is Tiburon, version 1.0

qe

qe -> qe qo # 0.100000

qe -> qo qe # 0.800000

qe -> qo # 0.100000

qo -> qo qo # 0.600000

qo -> qe qe # 0.200000

qo -> qe # 0.100000
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qo -> C # 0.100000

We can also convert grammars to identity transducers, but will cover that in the next

section.

If a sequence of wrtgs is input as arguments to Tiburon, they will be intersected,

and any other flags will be invoked on the intersected grammar4. For example, we

can combine the intersection of three.rtg and even.rtg from Figures 6.1a and 6.1c,

respectively, with the -c flag, which displays information about the input:

tiburon -c three.rtg even.rtg

This is Tiburon, version 1.0

RTG info for input rtg three.rtg:

3 states

13 rules

1 unique terminal symbols

infinite derivations

RTG info for input rtg even.rtg:

2 states

7 rules

1 unique terminal symbols

infinite derivations

RTG info for intersected RTG:

6 states

4As it is undecidable whether the intersection of two context-free languages is empty, we do not attempt
to intersect wcfgs.
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43 rules

1 unique terminal symbols

infinite derivations

As described in Chapter 3, grammars produced by automated systems such as those

used to perform machine translation [47] or parsing [10] frequently contain multiple

derivations for the same item with different weight. This is due to the systems’ represen-

tation of their result space in terms of weighted partial results of various sizes that may

be assembled in multiple ways. This property is undesirable if we wish to know the total

probability of a particular item in a language. It is also frequently undesirable to have

repeated results in a k-best list. The -d operation invokes May and Knight’s weighted

determinization algorithm for wrtgs [95], which is applicable to wcfgs too. Note that

candy.rtg is nondeterministic; this can be seen, since it has multiple paths that recognize

the same tree. Let’s generate some weights for this rtg again, and normalize them, but

save off the file to use again, using the standard Unix tee command:

tiburon --randomize -n candy.rtg | tee candy.wrtg

This is Tiburon, version 1.0

q

q -> S(subj vb obj) # 0.447814

q -> S(subj likes obj) # 0.552186

obj -> candy # 1.000000

vb -> likes # 0.779565

vb -> hates # 0.220435
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subj -> John # 0.663922

subj -> Stacy # 0.336078

If we enumerate the paths, we will see the same tree is recognized more than once:

tiburon -k 6 candy.wrtg

This is Tiburon, version 1.0

S(John likes candy) # 0.366608

S(John likes candy) # 0.231775

S(Stacy likes candy) # 0.185578

S(Stacy likes candy) # 0.117325

S(John hates candy) # 0.065538

S(Stacy hates candy) # 0.033176

The -d operation5 has the effect of combining duplicate paths:

tiburon -d 1 -k 6 candy.wrtg

This is Tiburon, version 1.0

Warning: returning fewer trees than requested

S(John likes candy) # 0.598384

S(Stacy likes candy) # 0.302902

S(John hates candy) # 0.065538

S(Stacy hates candy) # 0.033176

0

0

5which is invoked with a timeout flag, since determinization can potentially be an exponential algorithm,
even on wrtgs with finite language

174



As a side note, in order to obtain the correct result, Tiburon may have to produce a

wrtg that is not probabilistic! That is in fact what happens here:

tiburon -d 1 candy.wrtg

This is Tiburon, version 1.0

q5

q5 -> S(q2 q1 q4) # 0.506464

q5 -> S(q2 q3 q4) # 0.447814

q3 -> hates # 0.220435

q1 -> likes # 1.779565

q4 -> candy # 1.000000

q2 -> Stacy # 0.336078

q2 -> John # 0.663922

In real systems using large grammars to represent complex tree languages, memory

and cpu time are very real issues. Even as computers increase in power, the added

complexity of tree automata forces practitioners to combat computationally intensive

processes. One way of avoiding long running times is to prune weighted automata

before operating on them. One technique for pruning finite-state (string) automata is to

use the forward-backward algorithm to calculate the highest-scoring path each arc in the

automaton is involved in, and then prune the arcs that are only in relatively low-scoring

paths [122].

We apply this technique for tree automata by using an adaptation [54] of the inside-

outside algorithm [85]. The -p option with argument x removes productions from a
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tree grammar that are involved in paths x times or more worse than the best path. The

-c option provides an overview of a grammar, and we can use this to demonstrate the

effects of pruning. The file c1s4.determ.rtg (not shown here) represents a language

of possible translations of a particular Chinese sentence. We inspect the grammar as

follows:

./tiburon -m tropical -c c1s4.determ.rtg

Check info:

113 states

168 rules

28 unique terminal symbols

2340 derivations

Note that the -m tropical flag is used because this grammar is weighted in the tropical

semiring. We prune the grammar and then inspect it as follows:

java -jar tiburon.jar -m tropical -p 8 -c c1s4.determ.rtg

Check info:

111 states

158 rules

28 unique terminal symbols

780 derivations

Since we are in the tropical semiring, this command means “Prune all productions that

are involved in derivations scoring worse than the best derivation plus 8”. This roughly

corresponds to derivations with probability 2980 times worse than the best derivation.
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Note that the pruned grammar has fewer than half the derivations of the unpruned

grammar. A quick check of the top derivations after the pruning (using -k) shows that

the pruned and unpruned grammars do not differ in their sorted derivation lists until

the 455th-highest derivation.

Tiburon contains an implementation of EM training as described in [56] that is ap-

plicable for training wrtgs and wcfgs. In Figure 6.1f a portion of train.rtgwas shown,

but the entire wrtg is quite large:

tiburon -c weighted_trainable.rtg

This is Tiburon, version 1.0

File is large (>10,000 rules) so time to read in will be reported below

Read 10000 rules: 884 ms

Done reading large file

RTG info for input rtg weighted_trainable.rtg:

671 states

12136 rules

45 unique terminal symbols

infinite derivations

We invoke training using the -t flag and the number of desired iterations. Note that

the “ties” described above could be used here to ensure that two productions in a wrtg

with the same tie id are treated as the same parameter, for purposes of counting, and

thus their weights are always the same6. This particular case does not, however, have

6In the M-step, the weight of a single parameter with multiple rules is the sum of each rule’s count
divided by the sum of each rule’s normalization group count. To ensure a probabilistic grammar, this
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ties. We provide a corpus of 100 trees, corp.100, a portion of which was shown above,

and train for 10 iterations:

tiburon -t 10 corp.100 train.rtg > train.t10.rtg

This is Tiburon, version 1.0

File is large (>10,000 rules) so time to read in will be reported below

Read 10000 rules: 775 ms

Done reading large file

Cross entropy with normalized initial weights is 1.254; corpus prob

is eˆ-3672.832

Cross entropy after 1 iterations is 0.979; corpus prob is eˆ-2868.953

Cross entropy after 2 iterations is 0.951; corpus prob is eˆ-2786.804

Cross entropy after 3 iterations is 0.939; corpus prob is eˆ-2750.741

Cross entropy after 4 iterations is 0.933; corpus prob is eˆ-2732.815

Cross entropy after 5 iterations is 0.929; corpus prob is eˆ-2723.522

Cross entropy after 6 iterations is 0.928; corpus prob is eˆ-2718.316

Cross entropy after 7 iterations is 0.927; corpus prob is eˆ-2715.071

Cross entropy after 8 iterations is 0.926; corpus prob is eˆ-2712.862

Cross entropy after 9 iterations is 0.925; corpus prob is eˆ-2711.239

Since the input rtg has weights attached, these are used as initial parameter values.

This particular wrtg generates a node in a tree based on context of either the parent node

weight is then “removed” from the available weight for the remaining members of each normalization
group.
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or the parent and grandparent nodes. Chain productions are used to choose between

the amount of context desired. Two such productions from train.rtg are:

qSBAR_NP+ -> qSBAR_NP # .2

qSBAR_NP+ -> qSBAR # .8

So initially there is bias toward forgetting grandparent information when the context

is (SBAR, NP). The result of training from train.t10.rtg is:

qSBAR_NP+ -> qSBAR_NP # 0.936235

qSBAR_NP+ -> qSBAR # 0.063765

The data causes EM to reverse this initial bias.

6.4 Transducers

In this section we describe file formats and operations on transducers, the wxtts that

transform trees to trees, and the wxtsts that transform trees to strings.

6.4.1 File formats

Just as for the grammar case, both kinds of transducer have a similar formal structure:

(Q,Σ,∆,R,n0), though ∆ is ranked for wxtts and a simple terminal alphabet for wxtsts.

Consequently, the grammar files, wxtt and wxtst, both have a similar overall format,

which is remarkably similar to the grammar format:

<q0>

<rle>+
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where <q0> is the start state and each <rle> is a member of R. Nonterminals can in

general look like states, with the exception that : should not be used in their names. The

format of a rule, <rle> is:

<state>"."<lhs> "->" <rhs> ["#" <wgt>] ["@" <tie>]

where <state> is a state, and <wgt> and <tie> are as for grammars. <lhs> has the

following format:

<vbl>":" | <sig-sym> | <sig-sym>"("<lhs>+")"

where <sig-sym> is a member of Σ and <vbl> is a variable. Variables have the same

form as alphabet symbols, nonterminals, and states, though by convention we generally

name them like x4. A <lhs> is invalid if the same <vbl> appears more than once.

If the file is a wxtt, then <rhs> has the following format:

<state>"."<vbl> | <del-sym> | <del-sym>"("<rhs>+")"

If the file is a wxtst, then <rhs> has the following format:

"*e*" | (<state>"."<vbl>|<del-sym>)+

A <rhs> is invalid if it contains a variable not present in <lhs>. As for grammars, the

various alphabets are defined implicitly. Aside from the regular use of comments, type

can be enforced as follows:

% TYPE XR

% TYPE XRS
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q

q.A(Z(x0:) x1:) -> B(C(q.x0 r.x0) q.x1) # 0.3

q.E(x0:) -> F # 0.5

r.E -> G # 0.7
(a) wxtt.trans is a wxT transducer.

s

s.B(x0: x1:) -> D(t.x1 s.x0)

s.C(x0: x1:) -> H(s.x0 s.x1) # 0.6

s.C(x0: x1:) -> H(s.x1 s.x0) # 0.4

t.B(x0: x1:) -> D(s.x0 s.x1)

s.F -> L

t.F -> I

s.G -> J # 0.7

s.G -> K # 0.3
(b) wlnt.trans is a wLNT transducer.

rJJ

rJJ.JJ(x0: x1:) -> JJ(rJJ.x0 rTO.x1) # 0.250000

rJJ.JJ(x0: x1:) -> JJ(rTO.x1 rJJ.x0) # 0.750000

rJJ.JJ(x0:) -> JJ(t.x0) # 1.000000

t."abhorrent" -> "abhorrent" # 1.000000

rTO.TO(x0: x1:) -> TO(rPRP.x1 rTO.x0) # 0.333333

rTO.TO(x0: x1:) -> TO(rTO.x0 rPRP.x1) # 0.666667

rTO.TO(x0:) -> TO(t.x0) # 1.000000

rPRP.PRP(x0:) -> PRP(t.x0) # 1.000000

t."them" -> "them" # 1.000000

t."to" -> "to" # 1.000000
(c) Rotation transducer fragment.

iJJ

iJJ.JJ(x0: x1:) -> JJ(iJJ.x0 iJJ.x1) # 0.928571 @ 108

iJJ.JJ(x0: x1:) -> JJ(iJJ.x0 iJJ.x1 INS) # 0.071429 @ 107

iJJ.JJ(x0:) -> JJ(t.x0) # 0.928571 @ 108

iJJ.TO(x0: x1:) -> TO(iTO.x0 iTO.x1) # 1.000000 @ 159

iTO.TO(x0:) -> TO(t.x0) # 0.800000 @ 165

iTO.TO(x0:) -> TO(s.x0 INS) # 0.111842 @ 164

iTO.TO(x0:) -> TO(INS s.x0) # 0.088158 @ 163

iTO.PRP(x0:) -> PRP(t.x0) # 1.000000 @ 150

t."abhorrent" -> "abhorrent" # 1.000000

t."to" -> "to" # 1.000000

t."them" -> "them" # 1.000000

s."to" -> nn-to # 1.000000
(d) Insertion transducer fragment.

Figure 6.2: Example wxtt and wxtst files used to demonstrate Tiburon’s capabilities.
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We now present several wxtt and wxtst examples.

As with grammars, Tiburon tries to automatically detect the type of file input, but

the following lines, included as the first line of the transducer file, remove ambiguity:

% TYPE XR

% TYPE XRS

The format for batch files for training transducers is

(<count>

<in-item>

<out-item>)+

|

(<in-item>

<out-item>)+

The format for <in-item> is:

<sig-sym> | <sig-sym>"("<in-item>+")"

A batch file for training wxtts is a file of tree-tree pairs. The format for <out-item>

in this case is:

<del-sym> | <del-sym>"("<out-item>+")"

A batch file for training wxtsts is a file of tree-string pairs. The format for <out-item>

in this case is:

<del-sym>+
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Here is a sample corpus of English tree-Japanese string pairs:

6.4.2 Commands using transducer files

As with grammars, you can simply provide a transducer file to Tiburon as input and it

will return its contents to you.

tiburon comp2.rln

This is Tiburon, version 1.0

s

s.B(x0: x1:) -> D(t.x1 s.x0) # 1.000000

s.C(x0: x1:) -> H(s.x0 s.x1) # 0.600000

s.C(x0: x1:) -> H(s.x1 s.x0) # 0.400000

s.F -> L # 0.800000

s.G -> J # 0.700000

s.G -> K # 0.300000

t.B(x0: x1:) -> D(s.x0 s.x1) # 1.000000

t.F -> I # 0.200000

The -c flag works for transducers, too.

tiburon -c comp2.rln

This is Tiburon, version 1.0

Transducer info for input tree transducer comp2.rln:
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2 states

8 rules

Analogous to the intersection of wrtgs, providing multiple transducers to Tiburon

causes it to compose them. However, unlike the wrtg case, there are strict constraints on

the classes of transducer that can be composed.

tiburon wxtt.trans wlnt.trans

This is Tiburon, version 1.0

q0

q0.E(x0:) -> L # 0.500000

q0.A(Z(x0:) x1:) -> D(q13.x1 H(q0.x0 q14.x0)) # 0.180000

q0.A(Z(x0:) x1:) -> D(q13.x1 H(q14.x0 q0.x0)) # 0.120000

q13.E(x0:) -> I # 0.500000

q13.A(Z(x0:) x1:) -> D(H(q0.x0 q14.x0) q0.x1) # 0.180000

q13.A(Z(x0:) x1:) -> D(H(q14.x0 q0.x0) q0.x1) # 0.120000

q14.E -> J # 0.490000

q14.E -> K # 0.210000

Providing a wrtg and a transducer (or sequence of transducers) as arguments causes

Tiburon to do application7. As before, subsequent operations (such as -k) are invoked

on the resulting application wrtg or wcfg. In the following example we pass in a tree

directly from the command line; the - represents where standard input is placed in the

argument sequence.

7The currently released version only provides bucket brigade application
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echo ’JJ(JJ("abhorrent") TO(TO("to") PRP("them")))’ |

./tiburon -k 5 - rot ins

This is Tiburon, version 1.0

JJ(TO(TO("to") PRP("them")) JJ("abhorrent")) # 0.344898

JJ(TO(PRP("them") TO("to")) JJ("abhorrent")) # 0.172449

JJ(JJ("abhorrent") TO(TO("to") PRP("them"))) # 0.114966

JJ(JJ("abhorrent") TO(PRP("them") TO("to"))) # 0.057483

JJ(TO(TO(nn-to INS) PRP("them")) JJ("abhorrent")) # 0.048218

As mentioned before, we can convert grammars to transducers.

tiburon -x XRS even.rtg | tee even.xrs

This is Tiburon, version 1.0

qe

qe.A(x0: x1:) -> qe.x0 qo.x1 # 0.100000

qe.A(x0: x1:) -> qo.x0 qe.x1 # 0.800000

qe.B(x0:) -> qo.x0 # 0.100000

qo.A(x0: x1:) -> qo.x0 qo.x1 # 0.600000

qo.A(x0: x1:) -> qe.x0 qe.x1 # 0.200000

qo.B(x0:) -> qe.x0 # 0.100000

qo.C -> C # 0.100000

This is a good way to build a parser! We can now pass a string in to the right of this

transducer and form a wrtg that recognizes all (infinitely many) parses of the string with

an even number of total nodes!
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echo "C C C" | ./tiburon -k 5 a -

This is Tiburon, version 1.0

A(C A(C B(C))) # 0.000064

A(A(C C) B(C)) # 0.000048

A(C B(A(C C))) # 0.000048

B(A(A(C C) C)) # 0.000036

B(A(C A(C C))) # 0.000036

Finally, we can also train transducers. This transducer is an English-to-Japanese xNTs

and thus we also need to set the character class with -e euc-jp. Here is a part of the

transducer to be trained:

Training looks like this:
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tiburon -e euc-jp -t 5 corpus transducer > a

This is Tiburon, version 1.0

Cross entropy with normalized initial weights is 2.196;

corpus prob is eˆ-474.308

Cross entropy after 1 iterations is 1.849; corpus prob is eˆ-399.584

Cross entropy after 2 iterations is 1.712; corpus prob is eˆ-369.819

Cross entropy after 3 iterations is 1.544; corpus prob is eˆ-333.421

Cross entropy after 4 iterations is 1.416; corpus prob is eˆ-305.830

6.5 Performance comparison

Tiburon is primarily intended for manipulation, combination, and inference of tree au-

tomata and transducers, but as these formalisms generalize string transducers and au-

tomata (see Figure 2.19), we can use it as a wfst toolkit, too. We may thus compare

Tiburon’s performance with other wfst toolkits. In this section we conduct performance

and scalability tasks on wfsts and wfsas on three widely available wfst toolkits: Carmel

version 6.2 (released May 4, 2010) [53], OpenFst version 1.1 (released June 17, 2009) [4],

and FSM version 4.0 (released 2003) [102]. We repeat the same tests on wtt and wrtg

equivalents in Tiburon version 1.0 (released concurrently with this thesis in August,

2010). The wfst toolkits were written in C or C++ and have been extensively used and

tested over a number of years. Tiburon, by contrast, was written in Java and has received

less testing and development time. The following sections demonstrate that Tiburon is
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t

(q (r A B .2))

(s (t *e* *e* .4))

(a) fst rules and final state for
Carmel.

q r A B 1.609

s t *e* *e* 0.916

t
(b) fst rules and final state for
FSM and OpenFst.

q.A(x0:) -> B(r.x0) # .2

s.x0: -> t.x0 # .4

t.TIBEND -> TIBEND # 1
(c) Tree transducer rules and simula-
tion of final state for Tiburon.

A B

(d) String representation in
Carmel (-i switch converts to
identity fst).

0 1 A A 0

1 2 B B 0

2
(e) String representation as
identity fst in FSM and Open-
Fst.

A(B(TIBEND))

(f) String representation as monadic
tree in Tiburon.

Figure 6.3: Comparison of representations in Carmel, FSM/OpenFst, and Tiburon.

generally slower and less scalable than its competitors on tasks designed for wfst toolk-

its. We ran these on a custom-built machine with four AMD Opteron 850 processors

and 32g memory running Fedora Core 9. Times were calculated by summing the “user”

and “sys” information reported by the time command and averaging over three repeated

runs. All timing results are shown in Table 6.2. For Carmel and Tiburon we simply report

the averaged time to perform the described operation. FSM and OpenFst operate by first

converting text representations of transducers into a machine-readable binary format,

then performing necessary operations, then finally converting back to text format. We

thus separate out conversion from transducer manipulation operations for these toolkits

in Table 6.2.

6.5.1 Transliteration cascades

We tested the toolkits’ performance on transliterating Japanese katakana of English

names through a cascade of transducers, similar to that described by Knight and Graehl
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O D S R
1 generates English words 1 50,001
2 pronounces English sounds 150,553 302,349
3 converts English sounds to Japanese sounds 99 283
4 slightly disprefers certain Japanese phonemes 5 94
5 combines doubled Japanese vowels 6 53
6 converts Japanese sounds to katakana 46 294

Table 6.1: Generative order, description, and statistics for the cascade of English-to-
katakana transducers used in performance tests in Section 6.5.

[75].8 We built equivalent versions of these transducers as well as a representation of

katakana string glosses in formats suitable for the four toolkits. Figure 6.3 shows the

difference between the various formats. Note that for Tiburon, a monadic tree replaces the

katakana string. Also note that we represent weights in FSM and OpenFst in negative

log space. We used these transducers to conduct performance experiments in simple

reading, inference through a cascade, and k-best path search of an automaton.

6.5.1.1 Reading a transducer

The most basic task a toolkit can do is read in a file representing a transducer or automa-

ton. We compared the systems’ ability to read in and generate basic information about

the large pronunciation transducer listed as line 2 in Table 6.1. OpenFst is about twice as

slow as FSM and Carmel at reading in a transducer, while Tiburon is about two orders

of magnitude worse than FSM and Carmel.

8We do not include a transducer modeling misspellings caused by OCR, as Knight and Graehl [75] do,
and we include two additional transducers for technical reasons—lines 4 and 5 in Table 6.1.
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6.5.1.2 Inference through a cascade

As described by Knight and Graehl [75], we can use the cascade of transducers that

produce katakana from English words to decode katakana by passing a candidate string

backward through the cascade, thereby obtaining a representation of all possible inputs as

a (string or tree) automaton. We compared the systems’ ability to perform this operation

with the katakana gloss a n ji ra ho re su te ru na i to. Carmel is by far the fastest at this

task—OpenFst is about 4.5 times slower, FSM is ten times slower than OpenFst, and

Tiburon is another six times slower than FSM.

6.5.1.3 K-best

To complete the inference task it is important to obtain a k-best list from the result

automaton produced in Section 6.5.1.2. Carmel can produce such a list, as does Tiburon

(though in this case it is a list of monadic trees). FSM and OpenFst do not directly

produce such lists but rather produce wfsas or identity wfsts that contain only the k-best

paths; a post-process is needed to agglomerate labels and weights. Figure 6.4 shows the

2-best lists or their equivalent representations produced by each of the toolkits.

We compared the systems’ abilities to generate a 20, 20,000, and 2,000,000-best list

from the result automata they previously produced. For FSM and OpenFst we only

considered the generation of the representative automata. FSM and Carmel took about

the same amount of time for the 20-best list; OpenFst was an order of magnitude slower,

and Tiburon, which as previously noted is very inefficient at reading in structures, was

considerably worse. Tiburon was only twice as slow at obtaining the 20,000-best list

as it was the 20-best list; this is because the overhead incurred for reading in the large
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ANGELA FORRESTAL KNIGHT 2.60279825597665e-20

ANGELA FORRESTER KNIGHT 6.00711401244296e-21

(a) Carmel output.

ANGELA(FORRESTAL(KNIGHT(END))) # 2.602803E-20

ANGELA(FORRESTER(KNIGHT(END))) # 6.007097E-21

(b) Tiburon output.

0 1 *e*

0 28 *e*

1 2 *e*

2 3 *e* 0.0794004127

...

7 8 *e* 0.637409806

8 9 "ANGELA" 10.6754665

9 10 *e*

...

25 26 "KNIGHT" 8.59761715

26 27 *e*

27

(c) Partial FSM (OpenFst) output. The
complete output has 53 arcs and two
final states.

Figure 6.4: K-best output for various toolkits on the transliteration task described in
Section 6.5.1.3. Carmel produces strings, and Tiburon produces monadic trees with a
special leaf terminal. FSM and OpenFst produce wfsts or wfsas representing the k-best
list and a post-process must agglomerate symbols and weights.

automaton dominates the 20-best operation. OpenFst, which also is comparatively slow

at reading, was one order of magnitude slower than its 20-best operation at generating the

20,000-best list. Unlike in the 20-best case, FSM was much slower than Carmel at 20,000-

best. This may be due to FSM’s 32-bit architecture—the other three systems are all 64-bit.

The 32-bit limitation was certainly the reason for FSM’s inability to generate a 2,000,000-

best list. It is unable to access more than 4g memory, while the other systems were able

to take advantage of higher memory limits. Tiburon required explicit expansion of the

Java heap in order to complete its task. It should be noted, though, that Carmel was able

to obtain a 2,000,000-best list even when its 32-bit variant was run. This may be due to a

choice of algorithm—Carmel uses the k-best algorithm of Eppstein [40], while OpenFst

and FSM use the algorithm of Mohri and Riley [104].
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6.5.2 Unsupervised part-of-speech tagging

As described by Merialdo [98], the EM algorithm can be used to train a part-of-speech

tagging system given only a corpus of word sequences and a dictionary of possible

tags for each word in a given vocabulary. The task is unsupervised, as no explicit tag

sequences or observed tag-word pairs are given. An HMM is formed, where the states

represent an n-gram tag language model, and an emission for each word from each state

represents a parameter in a word-given-tag channel model. We follow Ravi and Knight

[114] and use a bigram model rather than Merialdo’s trigram model, as the former gives

better performance and is easier to construct. As is standard practice, the language model

is initially fully connected (all n-gram transitions are possible) and the channel model is

bootstrapped by the tag dictionary. We instantiate the HMM as a single unweighted wfst

and its tree transducer counterpart. A schematic of a sample HMM wfst for a language

of two tags and two words is shown in Figure 6.5.

6.5.2.1 Training

We compared Tiburon with Carmel on EM training of the HMM described in Section

6.5.2.9 The instantiated wfst/wtt has 92 states and 59,503 arcs. We trained both systems

for 10 iterations of EM using a corpus of 300 sentences of 20 words or fewer as training.

This is a reduction from the full Merialdo corpus of 1005 sentences of various lengths

ranging from 1 to 108 words, which overwhelms Tiburon’s memory, even when allowed

the full 32g available on the test machine. Tiburon was slightly more than two orders

of magnitude slower than Carmel. To demonstrate Carmel’s ability to scale, we ran it

9FSM and OpenFst do not provide training functionality.
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A A'

B B'

S E

ε:a / p(a|A)

ε:b / p(b|A)

ε:a / p(a|B)

ε:b / p(b|B)

ε:ε / p(A|A)

ε:ε / p(A|S)

ε:ε / p(B|S)

ε:ε / p(B|B)

ε:ε / p(A|B)

ε:ε / p(B|A)

ε:ε / p(E|A)

ε:ε / p(E|B)

Figure 6.5: An example of the HMM trained in the Merialdo [98] unsupervised part-of-
speech tagging task described in Section 6.5.2, instantiated as a wfst. Arcs either represent
parameters from the bigram tag language model (e.g., the arc from A’ to B, representing
the probability of generating tag B after tag A) or from the tag-word channel model (e.g.,
the topmost arc from A to A’, representing the probability of generating word a given
tag A). The labels on the arcs make this wfst suitable for training on a corpus of (ε, word
sequence) pairs to set language model and channel model probabilities such that the
probability of the training corpus is maximized.

on the whole training data using the aforementioned model, and also created a more

complicated model by splitting the tag space, in the spirit of Petrov and Klein [111],

effectively doubling the state space and adding many more hidden variables for EM to

model. This model as instantiated has 182 states and 123,057 arcs. Tiburon was unable

to train this model, even on the 300-sentence reduced corpus, but Carmel was able to

train this model on the entire Merialdo corpus easily.

6.5.2.2 Determinization

In order to use the trained transducers for tagging, the arcs representing the language

model are modified such that their input symbol is changed from ε to the tag correspond-

ing with the destination state. In the example of Figure 6.5, for instance, the arc label

from A’ to B would be changed from ε:ε to b:ε. Backward application of the candidate
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string can then be performed to form a result graph, and the most likely tag sequence

calculated. In the original bigram formulation the result graph is deterministic and there

is exactly one path for every distinct tag sequence. However, in the state split model

discussed above, this is not the case, and it is important to determinize the result graph

to ensure the most likely path and most likely sequence coincide. We used Carmel to

build the state-split model above and to obtain a nondeterministic result graph for a

303-word sequence. The graph is highly nondeterministic—it has 2,624 states and 6,921

arcs and represents 1.8 × 1081 distinct taggings in 4.1 × 10157 paths. Carmel does not

have a determinization function, but FSM, OpenFst, and Tiburon do, so we compared

the ability of the three systems to determinize this result graph. FSM and OpenFst were

quite fast at determinizing, even though the operation is potentially exponential in the

input size, while Tiburon was again two orders of magnitude slower.

6.5.3 Discussion

We have seen that Tiburon runs consistently around two orders of magnitude slower

than competing wfst toolkits on common tasks. Additionally, Tiburon does not scale with

transducer and data size as well as the other systems do. Partial reasons for this may

be unoptimized implementations, bugs, and the inherent advantage of compiled code.

However, Tiburon has a key liability in its more general nature. As an example, consider

the representation of a wfst arc in any of the wfst toolkits with a wxtt rule in Tiburon. A

wfst arc may be represented by four integers and a float, denoting the input and output

states and symbols and the arc weight, respectively. More complicated powers such as

parameter tying and locking that are available in Carmel require an additional integer
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E
FSM OF

C T
. . . .

reading 1.2s .2s 2.6s .4s 1.2s 87s
inference 2.0s 51.8s 5.4s .2s 1.2s 326s
20-best .09s .01s .4s .01s .02s 5.5s

20,000-best 1.6s 1.7s 1s 1.5s .2s 10s
2,000,000-best OOM 49s 112s 22s 1369s
train (reduced) N/A N/A 1.2s 159s

train (full) N/A N/A 2.9s OOM
train (split) N/A N/A 9.0s OOM
determinize .05 .03 .08s .06 N/A 232s

Table 6.2: Timing results for experiments using various operations across several trans-
ducer toolkits, demonstrating the relatively poor performance of Tiburon as compared
with extant string transducer toolkits. The reading experiment is discussed in Section
6.5.1.1, inference in Section 6.5.1.2, the three k-best experiments in Section 6.5.1.3, the
three training experiments in Section 6.5.2.1, and determinization in Section 6.5.2.2. For
FSM and OpenFst, timing statistics are broken into time to convert between binary and
text formats (“conv.”) and time to perform the specified operation (“op.”). N/A = this
toolkit does not support this operation. OOM = the test computer ran out of memory
before completing this experiment.

and boolean, but the memory profile of an arc is quite slim. A wxtt rule, on the other hand,

is represented by an integer for the input state, a float for the weight, two trees for the

input and output patterns, and a map linking the variables of the two sides together. The

trees and the map are instantiated as objects, and not fixed-width fields, giving a single

transducer rule a considerable minimum memory footprint. Additionally, overhead for

reading, storing, and manipulating these more general structures is increased due to

their variable size. A useful improvement to Tiburon would be a reimplementation of

the fundamental data structures such that their size is fixed. This would allow more

assumptions to be made about the objects and consequently more efficient processes,

particularly in time-consuming I/O.
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6.6 External libraries

We are grateful to the following external sources for noncommercial use of their Java

libraries in Tiburon: Martian Software, for the JSAP command line parsing libraries,

Stanford University’s NLP group, for its implementation of heaps, and to the makers of

the Gnu Trove, which provided several object container classes used in earlier versions

of the software.

6.7 Conclusion

We have described Tiburon, a general weighted tree automata toolkit, and described

some of its functions and their use in constructing natural language applications. Tiburon

can be downloaded at http://www.isi.edu/licensed-sw/tiburon/.
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Chapter 7

C T  FW

7.1 Concluding thoughts

To recap, this thesis provided the following contributions:

• Algorithms for key operations of a weighted tree transducer toolkit, some of which

previously only existed as proofs of concept, and some of which were novel.

• Empirical experiments, putting weighted tree transducers and automata to work

to obtain machine translation and parsing improvements.

• Tiburon, a tree transducer toolkit that allows others to use these key operations

and formalisms in their own systems.

The overall purpose of this thesis, some might say its “thesis”, has been that weighted

tree transducers and automata are useful formalisms for NLP models and that the de-

velopment of practical algorithms and tangible software with implementations of those

algorithms make these formal structures useful tools for actual NLP systems. As is

usual, though, it is the journey to this thesis’ end that is perhaps more important than the
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destination. While I have provided a toolkit to enable development of syntax-infused

systems as cascades of formal models, and used it to build some systems, the algorithm

development component of this work seems to me to be the most interesting contribu-

tion. Heretofore, tree transducers generally existed as abstract entities. Many papers

reasoned about them but little actual work was done using them, and this is chiefly

because there was no real concrete way to actually use them. With Tiburon, we really

can use these structures, and it is empirical work down the road that will actually test

their long-term utility. But this is not a software engineering thesis, and Tiburon is not

some exemplar of software design. No, the main contribution of this work is that before

this thesis began Tiburon could not be constructed, as there were no clear-cut algorithms

for nearly any desired operation. But now we not only have Tiburon, but the keys to

extend it, refine it, even rebuild it if needed.

7.2 Future work

There are several different directions of useful future work that would enhance the results

of this thesis. They broadly fall into the categories of algorithms, models, and engineering.

7.2.1 Algorithms

For most real-world systems, exact inference is an acceptable trade-off for speed. The

key operations of Tiburon could be replaced with principled approximate versions that

guarantee performance rates for a known amount of error. Approximate algorithms that

admit a wider class of automaton or transducer at the expense of “limited incorrectness”
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would also be useful. The following comprises a wish list of approximate variants of the

algorithms presented in this thesis:

• A k-best algorithm for wrtgs and wcfgs that runs linear in k but may skip some

paths.

• A polynomial-time determinization algorithm for wrtgs and wcfgs that returns

an output automaton that does not recognize some low-weighted trees that were

recognized by the input.

• A domain projection algorithm for wxNT that produces a wrtg recognizing a tree

series with equivalent support to the true domain projection but only enforces

that the weights of the trees be in the same relative order as they are in the true

projection.

• A composition algorithm for wxLNT that produces a wxLNT that over- or under-

generates the resulting weighted tree transformation.

• An on-the-fly application algorithm for a cascade, ending in a wxLNTs and a

string, that has memory and speed guarantees at the expense of a known loss of

the application wrtg’s tree series.

7.2.2 Models

An important next step in this line of work is a thorough examination of the limitations of

the tree transducer formalism at representing syntax models we care about. For example,

Collins’ parsing model [25] has a complicated back-off weighting scheme that does not
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seem amenable to representation in the tree transducer domain. Additionally, as shown

by DeNeefe and Knight [29], real-world systems built with tree transducer models have

to use very large rule sets to model slight variations in the trees that can be produced

(such as sentences with or without independent clauses). More flexible formalisms, such

as synchronous tree adjoining grammars [120] may end up being key, and thus relevant

extensions of the algorithms presented in this thesis may have to be designed.

7.2.3 Engineering

Tiburon has also not been extensively battle tested in ways that really bring it up to the

level of a production-level toolkit. This would indeed require a software engineering

thesis. Such an approach could also focus on improving the runtime of the algorithms

presented here—many are quite impractical for large-scale efforts. Additionally, the

benefits and limitations of general models such as tree transducers are exposed by

application to a wide domain. I have limited discussion in this thesis to natural language

experiments and scenarios, but tree-structured data exists in biological domains and may

be quite useful in the study of financial systems. Treatments of wider genres of data are

sure to provide insight into what challenges toward constructing a widely-used toolkit

remain, in both the formal and engineering domains.
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7.3 Final words

If nothing else it is my hope that this thesis has helped to reunite NLP practitioners and

formal language theorists, such that the two fields can attempt to talk to each other in a

common language and recognize how they may be of mutual benefit.

201



References

[1] Athanasios Alexandrakis and Symeon Bozapalidis. Weighted grammars and
Kleene’s theorem. Information Processing Letters, 24(1):1–4, January 1987.

[2] Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):117–144, 2003.

[3] Cyril Allauzen, Mehryar Mohri, and Brian Roark. A general weighted grammar
library. In Implementation and Application of Automata: Ninth International Confer-
ence (CIAA 2004), volume 3317 of Lecture Notes in Computer Science, pages 23–34,
Kingston, Ontario, Canada, July 2004. Springer-Verlag.

[4] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skui, and Mehryar
Mohri. OpenFst: A general and efficient weighted finite-state transducer library.
In Proceedings of the Ninth International Conference on Implementation and Application
of Automata, (CIAA 2007), volume 4783 of Lecture Notes in Computer Science, pages
11–23, Prague, 2007.
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