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Abstract. We improve an existing bisimulation minimisation algorithm for tree
automata by introducing backward and forward bisimulations and developing min-
imisation algorithms for them. Minimisation via forward bisimulation is effective for
deterministic automata and faster than the previous algorithm. Minimisation via
backward bisimulation generalises the previous algorithm and is thus more effective
but just as fast. We demonstrate implementations of these algorithms on a typical
task in natural language processing.

1 Introduction

Automata minimisation has a long and studied history. For deterministic string automata (dfa)
efficient algorithms exist. The well-known algorithm by Hopcroft [8] runs in time O (n log n)
where n is the number of states of the input automaton. The situation is worse for non-
deterministic automata (nfa). The minimisation problem for nfa is PSPACE-complete [13] and
cannot even be efficiently approximated within the factor o(n) unless P = PSPACE [7]. The
problem must thus be restricted to allow algorithms of practical value, and one possibility is to
settle for a partial minimisation. This was done in [2] for non-deterministic tree automata (nta),
which are a generalisation of nfa that recognise tree languages and are used in applications such
as model checking [1] and natural language processing [10].

The minimisation algorithm in [2] was inspired by a partitioning algorithm due to Paige and
Tarjan [14], and relies heavily on bisimulation; a concept introduced by R. Milner as a formal
tool for investigating transition systems. Intuitively, two states are bisimilar if they can simulate
each other, or equivalently, the observable behaviour of the two states must coincide. Depending
on the capacity of the observer, we obtain different types of bisimulation. In all cases we assume
that the observer has the capacity to observe the reaction to a given input (i.e., the given tree
is either accepted or rejected), so the presence of bisimilar states in an automaton indicates
redundancy. Identifying bisimilar states allows us to reduce the size of the input automaton,
but we are not guaranteed to obtain the smallest possible automaton. In this work we extend
the approach of [2] in two ways: (i) we relax the constraints for state equivalence, and (ii) we
introduce a new bisimulation relation that can be applied to deterministic bottom-up tree
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automata [5], unlike [2], which is ineffective on dta. Thus we are able to find smaller automata
than previously possible.

The two ways correspond, respectively, to two types of bisimulation: backward and forward
bisimulation [4]. Let us explain both types on a bottom-up tree automaton. In a forward
bisimulation on an automaton M , bisimilar states are restricted to have identical futures (i.e.,
the observer can inspect what will happen next). The future of a state q is the set of contexts1

that would be recognised by M , if the computation starts with the state q at the unique 2-
labelled node in the context. By contrast, backward bisimulation uses a local condition on the
transitions to enforce that the past of any two bisimilar states is equal (i.e., the observer can
observe what already happened). The past of a state q is the language that would be recognised
by the automaton if q were its only final state.

Both types of bisimulation yield efficient minimisation procedures and can be applied to arbi-
trary nta. Some special cases deserve mention: Forward bisimulation minimisation is useful on
deterministic bottom-up tree automata (dta) where it computes the unique (up to isomorphism)
minimal dta recognising the same language as the input dta (see Theorem 4.25). More impor-
tantly, it is shown in Theorem 4.23 that the asymptotic time-complexity of our minimisation
algorithm is O(r̂ m log n), where r̂ is the maximal rank of the input symbols, m is the size of
the transition table, and n is the number of states. Thus our algorithm supersedes the currently
best minimisation algorithm [5], whose complexity is O(mn), for deterministic bottom-up tree
automata.

Backward bisimulation, though slightly harder to compute, has great practical value as well.
The backward bisimulation presented in this paper is weaker than the bisimulation of [2]. Con-
sequently, the nta obtained by our backward bisimulation minimisation algorithm will have
at most as many states as the automaton obtained by the minimisation algorithm of [2].
In addition, the asymptotic time-complexity of our algorithm (see Theorem 3.31), which is
O

(

r̂2 m log n
)

is the same as the one for the minimisation algorithm of [2]2.

Finally, there are advantages that support having two types of bisimulation. First, forward
and backward bisimulation minimisation only yield nta that are minimal with respect to the
respective type of bisimulation. Thus applying forward and backward bisimulation minimisation
in an alternating fashion commonly yields even smaller nta (see Section 5). Second, in certain
domains only one type of bisimulation minimisation is effective. For example, on dta without
useless states backward bisimulation minimisation is ineffective because no two states of a dta
have the same past.

2 Preliminaries

We write N to denote the set of natural numbers including zero. The set {k, k + 1, . . . , n} is
abbreviated to [k, n], and the cardinality of a set S is denoted by |S|. We abbreviate Q × Q as
Q2, and the inclusion qi ∈ Di for all i ∈ [1, k] as q1 · · · qk ∈ D1 · · ·Dk.

Let R and P be equivalence relations on S. We say that R is coarser than P (or equivalently:
P is a refinement of R), if P ⊆ R. The equivalence class (or block) of an element s in S with
respect to R is the set [s]R = {s′ | (s, s′) ∈ R}. Whenever R is obvious from the context, we
simply write [s] instead of [s]R. It should be clear that [s] and [s′] are equal if s and s′ are in
relation R, and disjoint otherwise, so R induces a partition (S/R) = {[s] | s ∈ S} of S.

A ranked alphabet is a finite set of symbols Σ =
⋃

k∈N
Σ(k) which is partitioned into pairwise

1A context is a tree in which there is a unique leaf labelled by the special symbol 2.
2The O(r̂m log n) run time reported in [2] assumes a total transition table, thus absorbing a factor r̂ into m.
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disjoint subsets Σ(k). The set TΣ of trees over Σ is the smallest language over Σ such that
f t1 · · · tk is in TΣ for every f in Σ(k) and all t1, . . . , tk in TΣ. To improve readability we write
f [t1, . . . , tk] instead of f t1 · · · tk unless k is zero. Any subset of TΣ is called a tree language.

A non-deterministic tree automaton (for short: nta) is a tuple M = (Q,Σ, δ, F ), where Q is
a finite set of states, Σ is a ranked alphabet, and δ is a finite set of transitions of the form
f(q1, . . . , qk) → qk+1 for some symbol f in Σ(k) and q1, . . . , qk+1 ∈ Q. Finally, F ⊆ Q is a
set of accepting states. To indicate that a transition f(q1, . . . , qk) → qk+1 is in δ, we write

f(q1, . . . , qk)
δ
→ qk+1. In the obvious way, δ extends to trees yielding a mapping δ : TΣ → P(Q);

i.e., for t = f [t1, . . . , tk] in TΣ,

δ(t) = {q | f(q1, . . . , qk)
δ
→ q and qi ∈ δ(ti) for all i ∈ [1, k]} .

For every q ∈ Q we denote {t ∈ TΣ | q ∈ δ(t)} by L(M)q. The tree language recognised by M
is L(M) =

⋃

q∈F L(M)q. Finally, we say that a state q in Q is useless if L(M)q = ∅.

3 Backward bisimulation

3.1 Foundation

We first introduce the notion of backward bisimulation for a nta M . This type of bisimulation
requires bisimilar states to recognise the same tree language. Clearly, multiple states recognising
the same language are not necessary, so we show how to collapse a block of bisimilar states
into just a single state to obtain a potentially smaller nta M ′. The construction is such that
M ′ recognises exactly L(M). Finally, we show that there exists a coarsest backward bisimulation
on M , which leads to the smallest collapsed nta.

We need the following notation. Let Π be a partition of a set Q. For every integer k ∈ N, we
write Π(k) for the set of all strings of blocks of Π with length k; i.e.,

Π(k) = {D1 × · · · × Dk | D1, . . . , Dk ∈ Π} .

For the set of such strings of length at most k we write Π(≤k); i.e., Π(≤k) = Π(0) ∪ · · · ∪ Π(k).

Definition 3.1 (cf. [4, Definition 4.1]) Let M = (Q,Σ, δ, F ) be a nta, and let R be an
equivalence relation on Q. We say that R is a backward bisimulation on M if for every (p, q) ∈ R,
symbol f of Σ(k), and L ∈ (Q/R)(k)

∨

w∈L

f(w)
δ
→ p if and only if

∨

w∈L

f(w)
δ
→ q . 2

Example 3.2 Suppose we want to recognise the tree language L = {f [a, b], f [a, a]} over the
ranked alphabet Σ = Σ(2) ∪ Σ(0) with Σ(2) = {f} and Σ(0) = {a, b}. A canonical way to obtain
a nta N recognising L is to construct nta N1 and N2 that recognise only f [a, b] and f [a, a],
respectively. Then we construct N by disjoint union of N1 and N2. In this manner we could
obtain the nta N = ([1, 6], Σ, δ, {3, 6}) with

a()
δ
→ 1 b()

δ
→ 2 f(1, 2)

δ
→ 3 a()

δ
→ 4 a()

δ
→ 5 f(4, 5)

δ
→ 6 .

Let P = {1, 4, 5}2 ∪ {2}2 ∪ {3}2 ∪ {6}2. We claim that P is a backward bisimulation on N . In
fact, we only need to check the transitions leading to 1, 4, or 5 in order to justify the claim.
Trivially, the condition of Definition 3.1 is met for such transitions because (i) a() → q is in δ
and (ii) b() → q is not in δ for every state q ∈ {1, 4, 5}. 2
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Next we describe how a nta M = (Q,Σ, δ, F ) may be collapsed with respect to an equivalence
relation R on Q. In particular, we will invoke this construction for some R that is a backward
(in the current section) or forward (in Section 4) bisimulation on M .

Definition 3.3 (cf. [4, Definition 3.3]) Let M = (Q,Σ, δ, F ) be a nta, and let R be an
equivalence relation on Q. The aggregated nta (with respect to M and R), denoted by (M/R),
is the nta ((Q/R), Σ, δ′, F ′) given by F ′ = {[q] | q ∈ F} and

δ′ = {f([q1], . . . , [qk]) → [q] | f(q1, . . . , qk)
δ
→ q} . 2

The nta (M/R) has as many states as there are equivalence classes with respect to R. Thus
(M/R) cannot have more states than M . Clearly, our aim is to collapse as many states as
possible into a single state.

Example 3.4 Let N be the nta and P the backward bisimulation of Example 3.2. According to
Definition 3.3, the aggregated nta (N/P), which should recognise the language {f [a, b], f [a, a]},
is (Q′, Σ, δ′, F ′) where Q′ = {[1], [2], [3], [6]} and F ′ = {[3], [6]} and

a()
δ′
→ [1] b()

δ′
→ [2] f([1], [2])

δ′
→ [3] f([1], [1])

δ′
→ [6] . 2

For the rest of this section we let M be an arbitrary but fixed nta and R be a backward
bisimulation on M . Next we prepare for Corollary 3.7, which follows from Lemma 3.5. This
Corollary shows that M and (M/R) recognise the same tree language. The linking property is
that the states q and [q] (in their respective nta) recognise the same tree language. In fact, this
also proves that bisimilar states in M recognise the same tree language.

Lemma 3.5 (cf. [4, Theorem 4.2] and [3, Lemma 5.2]) For any state q of M we have
L((M/R))[q] = L(M)q.

Proof Let (M/R) = (Q′, Σ, δ′, F ′). We inductively prove the statement for every tree t of TΣ.
Suppose that t = f [t1, . . . , tk] for some symbol f in Σ(k) and trees t1, . . . , tk from TΣ.

f [t1, . . . , tk] ∈ L((M/R))[q]

⇐⇒ [q] ∈ δ′(f [t1, . . . , tk])

⇐⇒
∨

q1,...,qk∈Q

(

f([q1], . . . , [qk])
δ′
→ [q] ∧

∧

i∈[1,k]

[qi] ∈ δ′(ti)
)

⇐⇒ (by Definitions 3.1 and 3.3 and induction hypothesis applied k times)
∨

q1,...,qk∈Q

(

f(q1, . . . , qk)
δ
→ q ∧

∧

i∈[1,k]

qi ∈ δ(t1)
)

⇐⇒ q ∈ δ(f [t1, . . . , tk])

⇐⇒ f [t1, . . . , tk] ∈ L(M)q

Let us make the important property that backward bisimilar states recognise the tree language
explicit here. Essentially, this property yields that deterministic nta (without useless states)
admit only the identity as backward bisimulation because no two states in a deterministic nta
recognise the same tree language.

Corollary 3.6 (of Lemma 3.5) For every (p, q) ∈ R we have L(M)p = L(M)q. 2
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With the help of Lemma 3.5 we can now prove that M and (M/R) recognise the same tree
language.

Corollary 3.7 (cf. [4, Theorem 4.2] and [3, Lemma 5.3]) L((M/R)) = L(M).

Proof A tree t is in L((M/R)) if and only if there exists a state q of M such that q ∈ F
and t ∈ L((M/R))[q]. By Lemma 3.5, the latter holds precisely when there exists an accepting
state q of M such that t ∈ L(M)q, which is equivalent to t ∈ L(M).

Clearly, among all backward bisimulations on M the coarsest one yields the smallest aggregated
nta. Let us show that such a coarsest backward bisimulation on M exists. We prove this
statement by showing that for every two backward bisimulations on M there exists a backward
bisimulation on M that is coarser than both.

Lemma 3.8 (cf. [4, Theorem 3.5]) Let R and P be backward bisimulations on M . Then
there exists a backward bisimulation R′ on M such that R∪ P ⊆ R′.

Proof Let R′ be the smallest equivalence containing R ∪ P. We now show that R′ is a
backward bisimulation on M . Let (p, q) ∈ R′. Thus there exist n ∈ N and

(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ R ∪ P

such that p1 = p and pn = q. Clearly, every block D ∈ (Q/R′) is a union of blocks of (Q/R) as
well as a union of blocks of (Q/P). Thus the condition of Definition 3.1 is trivially met for all
(pi, pi+1) ∈ R∪P with i ∈ [1, n− 1]. Now we verify the condition for p and q. Thus, let f be a
symbol of Σ(k), and L ∈ (Q/R′)(k).

∨

w∈L

f(w)
δ
→ p1 ⇐⇒

∨

w∈L

f(w)
δ
→ p2 ⇐⇒ . . . ⇐⇒

∨

w∈L

f(w)
δ
→ pn−1 ⇐⇒

∨

w∈L

f(w)
δ
→ pn

Finally, let us conclude that the coarsest backward bisimulation P on M exists and that the
identity is the only backward bisimulation on (M/P).

Theorem 3.9 (cf. [4, Theorem 3.2]) There exists a coarsest backward bisimulation P on
the nta M , and the identity is the only backward bisimulation on (M/P).

Proof The existence of the coarsest backward bisimulation on M is a direct consequence of
Lemma 3.8 because only finitely many backward bisimulations may exist on M . We prove the
latter statement by contradiction. Suppose that (M/P) = (Q′, Σ, δ′, F ′) admits a backward
bisimulation R′ that is not the identity. Whenever we write [p] with p ∈ Q, we mean [p]P .
We construct the relation P ′ = {(p, q) | ([p], [q]) ∈ R′}. Trivially, P ′ is an equivalence relation
on Q. Further, we claim that P ′ is a backward bisimulation on M . To validate the claim, let
(p, q) ∈ P ′. Moreover, let f ∈ Σ(k) be a symbol and D1 · · ·Dk ∈ (Q/P ′)k be a sequence of
blocks. Clearly, for every i ∈ [1, k] the block Di is a union Di,1 ∪ · · · ∪Di,ni

of pairwise different
blocks Di,1, . . . , Di,ni

∈ (Q/P). Moreover, D′
i = {Di,1, . . . , Di,ni

} is a block in (Q′/R′).

∨

w∈D1···Dk

f(w)
δ
→ p ⇐⇒

∨

D′′

1 ···D
′′

k
∈D′

1···D
′

k

(

∨

w∈D′′

1 ···D
′′

k

f(w)
δ
→ p

)

⇐⇒
∨

D′′

1 ···D
′′

k
∈D′

1···D
′

k

f(D′′
1 , . . . , D′′

k)
δ′
→ [p] (by Definition 3.3)

5



⇐⇒
∨

D′′

1 ···D
′′

k
∈D′

1···D
′

k

f(D′′
1 , . . . , D′′

k)
δ′
→ [q] (by ([p], [q]) ∈ R′)

⇐⇒
∨

D′′

1 ···D
′′

k
∈D′

1···D
′

k

(

∨

w∈D′′

1 ···D
′′

k

f(w)
δ
→ q

)

(by Definition 3.3)

⇐⇒
∨

w∈D1···Dk

f(w)
δ
→ q

Thus P ′ is a backward bisimulation on M . Moreover, P ′ is coarser than P, and since R′ is
not the identity it follows that P ⊂ P ′. This contradicts the assumption that P is the coarsest
backward bisimulation on M . Consequently, the identity is the only backward bisimulation
on (M/P).

3.2 Minimisation algorithm

We now present a minimisation algorithm for nta that draws on the ideas presented in Sec-
tion 3.1. Algorithm 1 searches for the coarsest backward bisimulation R on the input nta M
by producing increasingly refined equivalence relations R0,R1,R2, . . . . The first of these is the
coarsest possible candidate solution (see Definition 3.17). The relation Ri+1 is derived from Ri

by removing pairs of states that prevent Ri from being a backward bisimulation. The algo-
rithm also produces an auxiliary sequence of relations P0,P1,P2, . . . that are used to find these
offending pairs. The algorithm terminates when Ri and Pi coincide, as Ri is then the coarsest
backward bisimulation of M .

Before we discuss the algorithm, its correctness, and its time complexity, we extend our notation.
For the rest of this section, let M be an arbitrary but fixed nta and r̂ = max{k | Σ(k) 6= ∅}.

Definition 3.10 For every q ∈ Q and k ∈ N let obsk
q : Σ(k) × P(Q)k → N be the mapping

given for every f ∈ Σ(k) and D1 · · ·Dk ∈ P(Q)k by

obsk
q (f, D1 · · ·Dk) = |{q1 · · · qk ∈ D1 · · ·Dk | f(q1, . . . , qk)

δ
→ q}| . 2

Intuitively, obsk
q (f, D1 · · ·Dk), the observation, is a count of the number of f -transitions that

lead from blocks D1, . . . , Dk to q, and thus a local observation of the properties of q (cf. Defini-
tion 3.1). As we will shortly see, we discard (q, q′) from our maintained set of bisimilar states
should obsk

q and obsk
q′ disagree in the sense that one is positive whereas the other is zero.

Definition 3.11 Let B, C be subsets of Q, i ∈ N, and L, L′ ⊆ P(Q)∗ be languages.

- The notation Li will abbreviate (Q/Pi)
0 ∪ · · · ∪ (Q/Pi)

r̂.

- We use L(B) to abbreviate {D1 · · ·Dk ∈ L | Di = B for some i ∈ [1, k]}.

- We let L(B,¬C) = {D1 · · ·Dk ∈ L | D1 · · ·Dk ∈ L(B) and Di 6= C for all i ∈ [1, k]}.

- We write cut (B) for the subset (Q2 \ B2) \ (Q \ B)2 of Q × Q.

- We write split (L) for the set of all (q, q′) in Q × Q for which there exist f ∈ Σ(k) and a word

w ∈ L of length k such that exactly one of obsk
q (f, w) and obsk

q′(f, w) is zero.

- We write Lw, where w = D1 · · ·Dk ∈ L′, to denote set of words in L of the form C1 · · ·Ck

where Ci ⊆ Di, for all i ∈ [1, k].
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- Finally, we write splitn (L′, L) for the set of all (q, q′) in Q×Q such that there exist a symbol
f in Σ(k) and a word w = D1 · · ·Dk ∈ L′ of length k such that

obsk
p(f, w) =

∑

C1···Ck∈Lw

obsk
p(f, C1 · · ·Ck)

holds for either p = q or p = q′ but not both. 2

input: a nta M = (Q,Σ, δ, F );

initially:

P0 := Q × Q;

R0 := P0 \ split (L0);
i := 0;

while Ri 6= Pi:

choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;

Pi+1 := Pi \ cut (Bi);
Ri+1 :=

(

Ri \ split (Li+1(Bi))
)

\ splitn (Li(Si), Li+1(Bi));
i := i + 1;

return: the nta (M/Ri);

Algorithm 1: A minimisation algorithm for non-deterministic tree automata.

Let us briefly discuss how the sets L0, L1, L2, . . . that are generated by Algorithm 1 relate
to each other. The set L0 contains a single word of length k, for each k ∈ [0, r̂], namely Qk.
Every word w of length k in the set Li+1 is in either in Li, or of the form D1 · · ·Dk, where
Dj ∈ {Bi, Si \ Bi} for some j ∈ [1, k].

Example 3.12 We trace the execution of the minimisation algorithm on the automaton N of
Example 3.2. Let us start with the initialisation. State 2 can be separated from [1, 6] since only
obs0

2 is non-zero for the symbol b and the empty word ǫ ∈ L0. Similarly, states 3 and 6 differ
from 1, 4, and 5, as obs2

3 and obs2
6 are both non-zero for the symbol f and word QQ. Thus we

have:
P0 = Q × Q and R0 = {1, 4, 5}2 ∪ {2}2 ∪ {3, 6}2 .

In the first iteration, we let S0 = Q and B0 = {2}. The algorithm can now use the symbol f and
word w = (Q \ {2}){2} in L1(B1) to distinguish between state 3 and state 6, as obs2

3(f, w) > 0
whereas obs2

6(f, w) = 0. The next pair of relations is then:

P1 = {2}2 ∪ (Q \ {2})2 and R1 = {1, 4, 5}2 ∪ {2}2 ∪ {3}2 ∪ {6}2 .

As the states in {1, 4, 5} do not appear at the left-hand side of any transition, this block will
not be further divided. However, another two iterations are needed before P3 equals R3. 2

Next we establish the that algorithm really computes the coarsest backward bisimulation on M .
We use the notations introduced in the algorithm.

Lemma 3.13 The relation Ri is a refinement of Pi, for all i ∈ {0, 1, 2, . . . }.
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Proof The proof is by induction on i. The base case is satisfied by the initialisation of
P0 to Q × Q. For the induction step, we proceed as follows. By definition, Ri+1 ⊆ Ri and
Pi+1 = Pi \ cut (Bi). Since Bi ∈ (Q/Ri), we also have the equality Ri ∩ cut (Bi) = ∅, and by
the induction hypothesis, the inclusion Ri ⊆ Pi. It follows that

Ri+1 ⊆ Ri = Ri\cut (Bi) ⊆ Pi\cut (Bi) = Pi+1 .

Lemma 3.13 assures that Ri is a proper refinement of Pi, for all i ∈ {0, . . . , t− 1} where t is the
value of i at termination. Up to the termination point t, we can always find blocks Bi ∈ (Q/Ri)
and Si ∈ (Q/Pi) such that Bi is contained in Si, and the size of Bi is at most half of that of Si.
This means that checking the termination criterion can be combined with the choice of Si and
Bi, because we can only fail to choose these blocks if R and P are equal. Lemma 3.14 captures
this line of thought.

Lemma 3.14 There exists a t < |Q| such that Rt = Pt.

Proof Clearly, the algorithm only terminates if Rt and Pt coincides for some t in N. Up until
termination, i.e. for all i less than t, we have that

|(Q/Ri)| > |(Q/Pi)| and |(Q/Pi+1)| > |(Q/Pi)|

hold by Lemma 3.13. The size of both (Q/Ri) and (Q/Pi) is bound from above by |Q|.
Should the algorithm reach iteration |Q|−1 before terminating, we have by necessity that both
|(Q/P|Q|−1)| and |(Q/R|Q|−1)| are equal to |Q|, so R|Q|−1 and P|Q|−1 coincide. Consequently,
there exists an integer t less than |Q| such that Rt and Pt are equal.

Observation 3.15 For every i in [0, t − 1] and word w of length k in Li(Si), it holds that

obsk
q (f, w) =

∑

q1···qk∈L
w
i+1(Bi)

obsk
q (f, q1 · · · qk) +

∑

q1···qk∈L
w
i+1(Si\Bi,¬Bi)

obsk
q (f, q1 · · · qk) .

Observation 3.16 For every D1 · · ·Dk in Li(Si), where i in [0, t − 1], there is a unique word
D′

1 · · ·D
′
k in Li+1(Si \ Bi,¬Bi) such that D′

j ⊆ Dj for all j ∈ [1, k].

Definition 3.17 Let R and P be two equivalence relations on Q such that P is coarser than
R. We say that R is stable with respect to P if, for every pair (q, q′) in R, obsk

q (f, w) is zero if

and only if obsk
q′(f, w) is zero, for every f ∈ Σ(k) and w ∈ (Q/P)k. We say that R is stable if it

is stable with respect to itself. 2

Lemma 3.18 The relation Ri is stable with respect to Pi, for all i ∈ {0, . . . , t}.

Proof By Lemma 3.13, the relation Pi is coarser than Ri. The remaining proof is by induction
on i. The base case follows from the definitions of R0 and P0. Now, let (q, q′) be a pair in Ri+1,
and let f be a symbol in Σ(k). We show that obsk

q (f, w) is zero if and only if obsk
q′(f, w) is zero,

for every f ∈ Σ and w ∈ Li+1. Let f be a symbol in Σ and let w be a word in Li+1. Depending
on w, there are three cases, and we examine each of them.

The first case is when w is in Li. The fact that (q, q′) is an element of Ri+1 means that (q, q′)
is also an element of the coarser relation Ri. Supporting ourselves on the induction hypothesis,
we have that obsk

q (f, w) is zero if only if obsk
q′(f, w) is zero.
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Alternatively, w is in Li+1(Bi), and here the desired equality follows from the fact that (q, q′)
is not in split (Li+1(Bi)).

The third and remaining case is when w is in Li+1(Si \ Bi,¬Bi). We compute as follows.

obsk
q (f, w) = 0

⇐⇒ obsk
q (f, [w]i) =

∑

w′∈L
[w]i
i+1 (B)

obsk
q (f, w′) (by Obs. 3.16 and 3.15)

⇐⇒ obsk
q′(f, [w]i) =

∑

w′∈L
[w]i
i+1 (B)

obsk
q′(f, w′) (as (q, q′) is in Ri+1)

⇐⇒ obsk
q′(f, w) = 0 (by Obs. 3.16 and 3.15) .

Lemma 3.19 Let R be a stable relation, and let D1, . . . , Dk be a sequence of sets of states, each
the union of one or more blocks in (Q/R). For every (q, q′) ∈ R, we have that obsk

q (f, D1 · · ·Dk)

is zero if and only if obsk
q′(f, D1 · · ·Dk) is zero, for every f ∈ Σ.

Proof Let R be a stable relation, let D1, . . . , Dk be a sequence of sets of states, each the
union of one or more blocks in (Q/R), let (q, q′) be a pair of states in R, and let f be a symbol
in Σ. We compute as follows:

obsk
q (f, D1 · · ·Dk) = 0

⇐⇒ (by definition of the obsk
q function)

{q1 · · · qk ∈ D1 · · ·Dk | f(q1, . . . , qk)
δ
→ q} = ∅

⋃

C1···Ck∈(D1/R)···(Dk/R)

{q1 · · · qk ∈ C1 · · ·Ck | f(q1, . . . , qk)
δ
→ q} = ∅

⇐⇒ (because (q, q′) is in R, and R is a stable relation)
⋃

C1···Ck∈(D1/R)···(Dk/R)

{q1 · · · qk ∈ C1 · · ·Ck | f(q1, . . . , qk)
δ
→ q′} = ∅

⇐⇒ (since Di is the union of one or more blocks in (Q/R))

{q1 · · · qk ∈ D1 · · ·Dk | f(q1, . . . , qk)
δ
→ q′} = ∅

⇐⇒ (by definition of the obsk
q′ function)

obsk
q′(f, D1 · · ·Dk) = 0

Lemma 3.20 If an equivalence relation R is a stable refinement of R0, then R is also a refine-
ment of Ri for every i ∈ {0, . . . , t}.

Proof The proof is by induction on i, and the base case is trivial. To cover the induction
step, we show that if (q, q′) is in R, then (q, q′) is also in Ri+1. This is done by examining
how the minimisation algorithm obtains Ri+1 from Ri. It is required that (q, q′) is in Ri, and
this is satisfied by the induction hypothesis. Moreover, it must hold that obsk

q (f, w) is zero if

and only if obsk
q′(f, w) is zero, for every symbol f ∈ Σ(k), and word w = D1 · · ·Dk in Li+1(Bi).

Since Di is the union of one or more blocks in (Q/Ri) and hence in (Q/R), for all i ∈ [1, k], this
condition is satisfied by Lemma 3.19.
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The following computation shows that (q, q′) is not in split (Li+1(Si \ Bi,¬Bi)). By Observa-
tion 3.16 we can write L

w
i+1(Si \ Bi,¬Bi) as {w′′}.

obsk
q (f, w) =

∑

w′∈L
w
i+1(B)

obsk
q (f, w′)

⇐⇒
∑

w′∈L
w
i+1(Si\Bi,¬Bi)

obsk
q (f, w′) = 0 (by Observation 3.15)

⇐⇒ obsk
q (f, w′′) = 0 (by Observation 3.16)

⇐⇒ obsk
q′(f, w′′) = 0 (by Lemma 3.19)

⇐⇒
∑

w′∈L
w
i+1(Si\Bi,¬Bi)

obsk
q′(f, w′) = 0 (by Observation 3.16)

⇐⇒ obsk
q′(f, w) =

∑

w′∈L
w
i+1(B)

obsk
q′(f, w′) (by Observation 3.15)

Theorem 3.21 Rt is the coarsest backward bisimulation on M .

Proof Lemma 3.14 guarantees that the algorithm terminates and Lemma 3.18 that Rt is
stable with respect to Pt. Since Rt is equal to Pt, the relation Rt is stable. In combination
with Lemma 3.20, we obtain the main result of this section.

Let us now analyse the running time of the minimisation algorithm on M . We use n and m
to denote the size of the sets Q and δ, respectively. In the complexity calculations, we write
δL, where L ⊆ P(Q)∗, for the subset of δ that contains entries of the form f(q1, . . . , qk) → q,
where f ∈ Σ(k), q ∈ Q, and q1 · · · qk is in B1 · · ·Bk for some B1 · · ·Bk ∈ L. Our computation
model is the random access machine [15], which supports indirect addressing, and thus allows
the use of pointers. This means that we can represent each block in a partition (Q/R) as a
record of two-way pointers to its elements, and that we can link each state to its occurrences
in the transition table. Given a state q and a block B, we can then determine [q]R in constant
time, and δL, where L ⊆ P(Q)∗, in time proportional to the number of entries.

To avoid pairwise comparison between states, we hash each state q in Q using (obsk
q )k∈[0,r̂] as

key, and then inspect which states end up at the same positions in the hash table. Since a
random access machine has unlimited memory, we can always implement a collision free hash h;
i.e., by interpreting the binary representation of (obsk

q )k∈[0,r̂] as a memory address, and the time

required to hash a state q is then proportional to the size of the representation of (obsk
q )k∈[0,r̂].

During the complexity calculations we maintain the following data structures:

R-blocks A linked list where each entry represents a block in the partition (Q/Ri), i being the
current iteration of the algorithm. Initially, R-blocks contains the entries F and Q \ F .

P-blocks A linked list where each entry S represents a block in the partition (Q/Pi). S contains
a pointer to each entry B in R-blocks such that B ⊆ S, labelled with the size of B.
Initially, P-blocks contains the single block Q, which has pointers to F and Q \F labelled
with |F | and |Q \ F |, respectively.

P-compound A linked list of pointers to those blocks in P-blocks that are composed of more
than one block in (Q/Ri). This list is empty only if Ri = Pi.
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Observation 3.22 The overall time complexity of the algorithm is

O
(

Init +
∑

i∈[0,t−1]
(Selecti + Cuti + Spliti + Splitni) + Aggregate

)

,

where Init, Selecti, Cuti, Spliti, Splitni, and Aggregate are the complexity of: the
initialisation phase; the choice of Si and Bi; the computation of Pi \ cut (Bi); the computation
of Ri \ split (Li+1(Bi)); the subtraction of splitn (Li(Si),Li+1(Bi)); and the construction of the
aggregated automaton (M/Rt); respectively.

Lemma 3.23 Init is in O(r̂m + n).

Proof The relation P0 can clearly be initialised in O(n). In the computation of P0 \split (L0),
the value of obsk

q (f, w) must be calculated for every q ∈ Q, f ∈ Σ, and w ∈ L0. By Lemma 3.27,
this can be done in time O

(

r̂ |δL0 |
)

= O(r̂m). To make the upcoming calculation of Splitn1

more efficient, we save the value of obsk
q (f, w) in the counter ∆0

q(f, w).

Observation 3.24 Selecti is in O(1).

Lemma 3.25 Cuti is in O(|Bi|).

Proof The entry Si is removed from P-compound, and the corresponding entry Si in P-
blocks is split into two entries, Si \ Bi and Bi, by iterating over the states pointed to by Bi in
time O(|Bi|). The entry representing Si \ Bi points to every block in (Q/Ri) that the entry
representing Si pointed to, except of course Bi. If Si \Bi is still compound, then it is added to
P-compound. The entry representing Bi only points to Bi.

Lemma 3.26 Let R and P be equivalence relations on Q. The computation of R \ split (L),
where L ⊆ (Q/P)∗, is in O

(

r̂ |δL|
)

.

Proof Let L(k) = {w ∈ L | w is of length k}. We begin the computation by adjusting the

value of obsk
q (f, [q1]Pi+1 · · · [qk]Pi+1) for each transition f(q1, . . . , qk) → q in δL, at the cost of

O(r̂ |δL|) computation steps. The elements of Ri that are to be retained in Ri+1 can thereafter
be determined by hashing each state q in Q using (obsk

q )k∈N on the domain ∪k∈[0,r̂](Σ(k) ×L(k))
as key, and then keeping those pairs of states that end up at the same memory address.

We now make the observation that if the pair f ∈ Σ(k) and D1 · · ·Dk ∈ L(k) is in the

support of obsk
q for some q ∈ Q, then there is a transition f(q1 · · · qk) → q in δ such that

q1 · · · qk ∈ D1 · · ·Dk. In other words, size of the support of (obsk
q )q∈Q,k∈N on the domain

∪k∈[0,r̂](Σ(k) ×L(k)) does not exceed the size of δL. We conclude that the total time required to
hash the states is determined by the time it takes to calculate their hash key.

Lemma 3.27 is immediate from Lemma 3.26.

Lemma 3.27 Spliti is in O
(

r̂ |δLi+1(Bi)|
)

.

Lemma 3.28 Splitni is in O
(

r̂ |δLi+1(Bi)|
)

.

Proof In the proof, we assume that we have access to a family of functions (∆i
q)q∈Q such that

∆i
q(f, w) = obsk

q (f, w) for every f ∈ Σ and word w in Li. The computation of ∆0 is carried out
in the initialisation phase and is discussed in the proof of Lemma 3.23.

To prepare for the computation of Splitni, the set δLi+1(Bi) is traversed, and for each transition
f(q1 · · · qk) → q,

11



• ∆i
q(f, [q1]Pi

· · · [qk]Pi
) is decreased by one, and

• ∆i+1
q (f, [q1]Pi+1 · · · [qk]Pi+1) is increased by one.

When the last element of δLi+1(Bi) has been examined, ∆i+1
q (f, w′) is identified with ∆i

q(f, w),
where {w′} = L

w
i+1(Si\Bi,¬Bi), for every w ∈ Li. The computation so far is in O

(

r̂
∣

∣δLi+1(Bi)

∣

∣

)

.

The subtraction of splitn (Li(Si),Li+1(Bi)) from Ri can then be determined by hashing Q into
equivalence classes, using the value of ∆i

q on the domain

{(f, [q1]Pi
· · · [qk]Pi

) | f(q1, . . . , qk) → q ∈ δLi+1(Bi)}

as key for q. The total time needed to calculate Splitni is thus in O
(

r̂ |δLi+1(Bi)|
)

.

Lemma 3.29 Aggregate is in O(r̂m + n).

Proof The complexity of deriving the aggregated wta (M/Rt) = (Q′, Σ, δ′, F ′) is a follows:
The alphabet Σ is identical that in M , and he components Q′ and F ′ are both given by the
entries in R-blocks; to determine if a block in R-blocks is final, just follow the pointer to one
of its constituent states and check if that state is final. This list can be read in time O(n). To
obtain δ′ it suffices to iterate over δ, as each state is linked to its equivalence class, and this
requires another O(r̂m) computation steps.

Lemma 3.30 For each q ∈ Q, we have that |{Bi | i ∈ N and q ∈ Bi}| ≤ log n.

Proof Let Bi and Bj , where i < j, be two blocks that both include the state q. Since Rj is a
refinement of Ri, we have that Bj is a subset of Bi. We know then that |Bj | is less or equal to
|Bi| /2, or else Bj would violate the selection criteria for the B-blocks. If we order the B-blocks
in which q occurs in descending order (with respect to their size), we have that each block in
the list is at most half the size of its predecessor. The first block in which q occurs cannot be
larger than n, and the last block cannot be smaller than a singleton. Hence, the q is included
in at most log n distinct B-blocks.

Theorem 3.31 The backward minimisation algorithm is in O
(

r̂2 m log n
)

.

Proof By Observation 3.22 and 3.24, together with Lemmata 3.23, 3.25, and 3.27 through 3.29,
the time complexity of the algorithm can be written as

O
(

(r̂m + n) +
∑

i∈[0,t−1]
(1 + |Bi| + r̂ |δLi+1(Bi)| + r̂ |δLi+1(Bi)|) + (r̂m + n)

)

.

Omitting the smaller terms and simplifying, we obtain O
(

r̂
∑

i∈[0,t−1] |δLi+1(Bi)|
)

. According

to Lemma 3.30, no state occurs in more than log n distinct B-blocks, so no transition in δ will
contribute by more than r̂ log n to the total sum. As there are m transitions, the overall time
complexity of the algorithm is O(r̂2m log n).

We next compare the presented backward bisimulation to the bisimulation of [2].

Definition 3.32 (cf. [2, Section 5]) Let P be an equivalence relation on Q. We say that P
is an AKH-bisimulation on M , if for every (p, q) ∈ P we have (i) p ∈ F if and only if q ∈ F ;
and (ii) for every symbol f in Σ(k), index i ∈ [1, k + 1], and sequence D1, . . . , Dk+1 of blocks
in (Q/P)

∨

p1···pk+1∈D1···Dk+1,
pi=p

f(p1, . . . , pk)
δ
→ pk+1 ⇐⇒

∨

q1···qk+1∈D1···Dk+1,
qi=q

f(q1, . . . , qk)
δ
→ qk+1 . 2
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Lemma 3.33 Every AKH-bisimulation on M is a backward bisimulation on M .

Proof The proof is straightforward if we consider the index i = k + 1 in Definition 3.32.

Clearly, the coarsest backward bisimulation R on M must be coarser than the coarsest AKH-
bisimulation P on M . Hence (M/R) has at most as many states as (M/P). Since our algorithm
for minimisation via backward bisimulation is computationally as efficient as the algorithm of [2]
(see Theorem 3.31 and [2, Section 3]), it supersedes the minimisation algorithm of [2].

4 Forward bisimulation

4.1 Foundation

In this section we consider a computationally simpler notion of bisimulation. Minimisation
via forward bisimulation coincides with classical minimisation on deterministic nta (see Theo-
rem 4.25). In addition, the two minimisation procedures greatly increase their potential when
they are used together in an alternating fashion (see Section 5). We will follow the programme
of Section 3.

First we introduce contexts. A context is a string that contains the special symbol 2 exactly
once. Into a context a symbol may be substituted; the symbol replaces the special symbol 2 in
the string.

Definition 4.1 Let Q be a set such that 2 /∈ Q. The set CQ
(k) of contexts (over Q) is given by

{w ∈ (Q ∪ {2})k | w contains 2 exactly once} ,

and for every c ∈ CQ
(k) and q ∈ Q we write c[[q]] to denote the word that is obtained from c by

replacing the special symbol 2 with q. 2

Henceforth, we assume that the special symbol 2 occurs in no set of states of any nta. By a
simple renaming of states this property can easily be guaranteed.

Definition 4.2 (cf. [4, Definition 3.1]) Let M = (Q,Σ, δ, F ) be a nta, and let R be an
equivalence relation on Q. We say that R is a forward bisimulation on M if for every (p, q) in R
we have (i) p ∈ F if and only if q ∈ F ; and (ii) for every symbol f in Σ(k), context c ∈ CQ

(k),

and block D in (Q/R)

∨

r∈D

f(c[[p]])
δ
→ r if and only if

∨

r∈D

f(c[[q]])
δ
→ r . 2

Note that Condition (ii) in Definition 4.2 is automatically fulfilled for all nullary symbols. Let
us continue Example 3.4 (the aggregated nta is defined in Definition 3.3).

Example 4.3 Recall the aggregated nta from Example 3.4. An isomorphic nta N is given by
([1, 4], Σ, δ, {3, 4}) with

a()
δ
→ 1 b()

δ
→ 2 f(1, 2)

δ
→ 3 f(1, 1)

δ
→ 4 .

We have seen in Example 3.12 that the identity is the only backward bisimulation on N . Let
us consider P = {1}2 ∪ {2}2 ∪ {3, 4}2. We claim that P is a forward bisimulation on N .
Clearly, Condition (i) of Definition 4.2 is met, and thus it remains to check Condition (ii) for
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the symbol f . This is also trivial, since (1, 2) /∈ P and the states 3 and 4 only appear on the

right hand side of
δ
→. Thus P is a forward bisimulation.

The aggregated nta (N/P) is (Q′, Σ, δ′, F ′) with Q′ = {[1], [2], [3]} and F ′ = {[3]} and

a()
δ′
→ [1] b()

δ′
→ [2] f([1], [2])

δ′
→ [3] f([1], [1])

δ′
→ [3] . 2

For the rest of this section we let M be an arbitrary but fixed nta and R be a forward bisim-
ulation on M . In the forward case, a collapsed state of (M/R) functions like the combination
of its constituents in M (cf. Section 3.1). In particular, bisimilar states need not recognise the
same tree language. However, (M/R) and M do recognise the same tree language.

Lemma 4.4 (cf. [4, Theorem 3.1]) L((M/R))[q] =
⋃

p∈[q] L(M)p for every state q of Q.

Proof Let (M/R) = (Q′, Σ, δ′, F ′). We prove the statement by induction for every tree t. Sup-
pose that t = f [t1, . . . , tk] for some symbol f ∈ Σ(k), and sequence of subtrees t1, . . . , tk ∈ TΣ.

f [t1, . . . , tk] ∈ L((M/R))[q]

⇐⇒ [q] ∈ δ′(f [t1, . . . , tk])

⇐⇒
∨

q1,...,qk∈Q

(

f([q1], . . . , [qk])
δ′
→ [q]

)

∧
∧

i∈[1,k]

[qi] ∈ δ′(ti)

⇐⇒ (by induction hypothesis applied k times)
∨

q1,...,qk∈Q,
p1···pk∈[q1]···[qk]

(

f([q1], . . . , [qk])
δ′
→ [q]

)

∧
∧

i∈[1,k]

pi ∈ δ(ti)

⇐⇒ (by Definitions 4.2 and 3.3)
∨

p∈[q],
q1,...,qk∈Q

(

f(q1, . . . , qk)
δ
→ p

)

∧
∧

i∈[1,k]

qi ∈ δ(ti)

⇐⇒
∨

p∈[q]

p ∈ δ(f [t1, . . . , tk])

⇐⇒ f [t1, . . . , tk] ∈
⋃

p∈[q]

L(M)p

Corollary 4.5 (cf. [4, Corollary 3.4]) L((M/R)) = L(M).

Proof Let t ∈ TΣ be arbitrary. We have t ∈ L((M/R)) if and only if there exists a state q
of M such that q ∈ F and t ∈ L((M/R))[q]. By Definitions 4.2 and 3.3 and Lemma 4.4, the
latter holds if and only if there exists a state p of M such that p ∈ F and t ∈ L(M)p. Clearly,
this is exactly the case when t ∈ L(M).

The coarsest of all forward bisimulations on M yields the smallest aggregated nta, and this nta
cannot be reduced further by collapsing it with respect to to some forward bisimulation. We
again first that the coarsest forward bisimulation on M exists.

Lemma 4.6 (cf. [4, Theorem 3.5]) Let R and P be forward bisimulations on M . Then
there exists a forward bisimulation R′ on M such that R∪ P ⊆ R′.
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Proof Let R′ be the smallest equivalence containing R∪P. We now show that R′ is a forward
bisimulation on M . Let (p, q) ∈ R′. Thus there exist an integer n ∈ N and

(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ R ∪ P

such that p1 = p and pn = q. Thus p ∈ F if and only if q ∈ F . Now to Condition (ii) of
Definition 4.2. Let f be a symbol of Σ(k), D a block in (Q/R′), and c ∈ CQ

(k) be a context.

Clearly, the block D is a union of blocks of (Q/R) as well as a union of blocks of (Q/P). Thus
Condition (ii) of Definition 4.2 is trivially met for all (pi, pi+1) ∈ R ∪ P. Now we verify the
condition for p and q.

∨

r∈D

f(c[[p1]])
δ
→ r ⇐⇒

∨

r∈D

f(c[[p2]])
δ
→ r ⇐⇒ . . . ⇐⇒

∨

r∈D

f(c[[pn]])
δ
→ r

Theorem 4.7 (cf. [4, Theorem 3.2]) There exists a coarsest forward bisimulation P on M ,
and the identity is the only forward bisimulation on (M/P).

Proof The existence of the coarsest forward bisimulation P follows from Lemma 4.6. The
second part of the statement is proved by contradiction, so suppose that (M/P) = (Q′, Σ, δ′, F ′)
admits a non-identity forward bisimulation R′. Whenever we write [p] (with p ∈ Q) in the
remaining proof, we mean [p]P . Let P ′ = {(p, q) | ([p], [q]) ∈ R′}. Obviously, P ′ is an equivalence
relation on Q. We claim that P ′ is a forward bisimulation on M . This would contradict the
assumption that P is the coarsest forward bisimulation on M because P ⊆ P ′ and since R′ is
not the identity it follows that P ⊂ P ′.

Let (p, q) ∈ P ′. We start with Condition (i) of Definition 4.2. Since ([p], [q]) ∈ R′ we have
[p] ∈ F ′ if and only if [q] ∈ F ′. Moreover, by Definition 3.3 we also have

p ∈ F ⇐⇒ [p] ∈ F ′ ⇐⇒ [q] ∈ F ′ ⇐⇒ q ∈ F .

It remains to validate Condition (ii). Let f ∈ Σ(k) be a symbol, c = q1 · · · qi−12qi+1 · · · qk be a

context of CQ
(k) for some q1, . . . , qk ∈ Q and i ∈ [1, k], and D ∈ (Q/P ′) be a block. Clearly, the

block D is a union D1 ∪ · · · ∪ Dn of pairwise different blocks D1, . . . , Dn ∈ (Q/P). Moreover,
D′ = {D1, . . . , Dn} is a block in (Q′/R′). Finally, let c′ = [q1] · · · [qi−1]2[qi+1] · · · [qk], which is a

context of CQ′

(k).

∨

r∈D

f(c[[p]])
δ
→ r ⇐⇒

∨

D′′∈D′

(

∨

r∈D′′

f(c[[p]])
δ
→ r

)

⇐⇒
∨

D′′∈D′

f(c′[[[p]]])
δ′
→ D′′ (by Definition 3.3)

⇐⇒
∨

D′′∈D′

f(c′[[[q]]])
δ′
→ D′′ (because ([p], [q]) ∈ R′)

⇐⇒
∨

D′′∈D′

(

∨

r∈D′′

f(c[[q]])
δ
→ r

)

⇐⇒
∨

r∈D

f(c[[q]])
δ
→ r (by Definition 3.3)

Thus P ′ is a strictly coarser forward bisimulation on M than P, which contradicts our assump-
tion. Hence the identity is the only forward bisimulation on (M/P).
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4.2 Minimisation algorithm

We now modify the algorithm of Section 3.2 so as to minimise with respect to forward bisimu-
lation. As in Section 3.2 this requires us to extend our notation. We denote by Ck

Q the of set
of contexts over Q: the set of k-tuples over Q ∪ {2} that contain the special symbol 2 exactly
once. We denote by c[[q]], where c ∈ Ck

Q and q ∈ Q, the tuple that is obtained by replacing the
unique occurrence of 2 in c by q.

Definition 4.8 For each state q in Q and k ∈ N, the mapping obsf k
q : Σ(k) × Ck

Q × P(Q) → N

is defined for every symbol f ∈ Σ(k), context c ∈ Ck
Q, and set D ⊆ Q of states by

obsf k
q (f, c, D) = |{q′ ∈ D | f(c[[q]])

δ
→ q′}| . 2

Like obsk
q , obsf k

q is a local observation of the properties of q. The difference here, is that

obsf k
q (f, c, D) is the number of f -transitions that match the sequence c[[q]] and lead to a state

of D. In contrast, obsk
q looked from the other side of the rule.

Definition 4.9 Let D and D′ be subsets of Q.

• We write splitf (D) for the set of all pairs (q, q′) in Q × Q, for which there exist f ∈ Σ(k)

and c ∈ Ck
Q such that exactly one of obsf k

q (f, c, D) and obsf k
q′(f, c, D) is non-zero.

• Similarly, we write splitfn (D, D′) for the set of all pairs (q, q′) in Q × Q, for which there
exist f ∈ Σ(k) and c ∈ Ck

Q such that obsf k
p(f, c, D) = obsf k

p(f, c, D′) holds for either p = q
or p = q′ but not both. 2

We can now construct a minimisation algorithm based on forward bisimulation by replacing the
initialisation of R0 in Algorithm 1 with R0 = ((Q \ F )2 ∪ F 2) \ splitf (Q) and the computation
of Ri+1 with Ri+1 =

(

Ri \ splitf (Bi)
)

\ splitfn (Si, Bi).

Example 4.10 We show the execution of the minimisation algorithm on the nta N from Ex-
ample 4.3. In the initialisation of R0, states 3 and 4 are separated from the others as they
are accepting. State 1 is distinguished as only obsf 2

1 is non-zero on the symbol f , context
(2, 2) ∈ C2

[1,4], and block Q in P0. When the initialisation phase is complete, we have the

relations P0 = Q × Q and R0 = {1}2 ∪ {2}2 ∪ {3, 4}2. As neither state 3 nor state 4 appear on
a left-hand side of any transition, the algorithm will not separate them, so R0 is already equal
the final R relation. The termination point is reached in the second iteration, when P0 has
been refined to R0. 2

We now verify that the minimisation algorithm is correct. Note that Lemmata 3.13 and 3.14
remain valid, i.e. the modified algorithm terminates in less than n iterations.

Observation 4.11 The following equality holds for all i.

obsf k
q (f, c, Si) = obsf k

q (f, c, Si \ Bi) + obsf k
q (f, c, Bi)

Definition 4.12 Let R and P be two equivalence relations on Q, where P is coarser than R.
We say that R is stable with respect to P if for every pair (q, q′) in R it holds that obsf k

q (f, c, D)

is zero if and only if obsf k
q′(f, c, D) is zero, for every f in Σ, c in CQ, and D in (Q/P). We say

that R is stable if it is stable with respect to itself. 2

Lemma 4.13 The relation Ri is stable with respect to Pi, for all i ∈ {0, . . . , t}.
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Proof By Lemma 3.13, the relation Pi is coarser than Ri. The remaining proof is by induction
on i. The base case follows from the definitions of R0 and P0. Now, let (q, q′) be a pair in Ri+1,
let f be a symbol in Σ, and let c be a context in CQ. We show that obsf k

q (f, c, D) is zero if and

only if obsf k
q′(f, c, D) is zero, for each block D in (Q/Pi+1). Now, depending on D, there are

three cases:

In the first case, the intersection between D and Si is empty. This implies that D is also a block
of (Q/Pi). Furthermore, the fact that (q, q′) is an element of Ri+1 means that (q, q′) is also an
element of the coarser relation Ri. Supporting ourselves on the induction hypothesis, we have
that obsf k

q (f, c, D) is zero if and only if obsf k
q′(f, c, D) is zero.

In the second case, D = Bi, so the desired relation follows from the fact that that the pair
(q, q′) was not in splitf (Bi) because it is in Ri+1.

The third alternative is that D = Si \ Bi, in which case we compute as follows.

obsf k
q (f, c, Si \ Bi) = 0

⇐⇒ obsf k
q (f, c, Si) = obsf k

q (f, c, Bi) (by Observation 4.11)

⇐⇒ obsf k
q′(f, c, Si) = obsf k

q′(f, c, Bi) (since (q, q′) is in Ri+1)

⇐⇒ obsf k
q′(f, c, Si \ Bi) = 0 (by Observation 4.11)

Lemma 4.14 Let R be a stable relation, and let D be union of one or more blocks in (Q/R).
For every (q, q′) ∈ R, f ∈ Σ, and c ∈ CQ, we have that obsf k

q (f, c, D) is zero if and only if

obsf k
q′(f, c, D) is zero.

Proof Let (q, q′) ∈ R, f ∈ Σ, and c ∈ CQ. We compute as follows:

obsf k
q (f, c, D) = 0

⇐⇒ (By definition of the obsf k
q function.)

{p ∈ D | f(c[[q]])
δ
→ p} = ∅

⇐⇒ (Since R is a refinement of Ri by induction hypothesis.)
⋃

C∈(D/R)

{p ∈ C | f(c[[q]])
δ
→ p} = ∅

⇐⇒ (Because (q, q′) is in R, and R is a stable relation.)
⋃

C∈(D/R)

{p ∈ C | f(c[[q′]])
δ
→ p} = ∅

⇐⇒ (Since R is a refinement of Ri by induction hypothesis.)

{p ∈ D | f(c[[q′]])
δ
→ p} = ∅

⇐⇒ (By definition of the obsf k
q′ function.)

obsf k
q′(f, c, Bi) = 0

Lemma 4.15 If an equivalence relation R is a stable refinement of R0, then R is also a refine-
ment of Ri for every i ∈ {0, . . . , t}.
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Proof The proof is by induction on i, and the base case is trivial. To cover the induction
step, we show that if (q, q′) is in R, then (q, q′) is also in Ri+1. This is done by examining
how the minimisation algorithm obtains Ri+1 from Ri. It is required that (q, q′) is in Ri,
and this is satisfied by the induction hypothesis. Moreover, the mappings obsf k

q (f, c, Bi) and

obsf k
q′(f, c, Bi) must either both be zero, or both be non-zero, regardless of f and c. Since R is

supposedly stable and Bi, being a block in the coarser Ri, is the union of one or more blocks
in R, Lemma 4.14 assures that also this condition is met. Finally, it must hold that

obsf k
q (f, c, Bi) = obsf k

q (f, c, Si) ⇐⇒ obsf k
q′(f, c, Bi) = obsf k

q′(f, c, Si) ,

for every f ∈ Σ and c ∈ CQ. We reason as follows:

obsf k
q (f, c, Bi) = obsf k

q (f, c, Si)

⇐⇒ obsf k
q (f, c, Si \ Bi) = 0 (by Observation 4.11)

⇐⇒ obsf k
q′(f, c, Si \ Bi) = 0 (by Lemma 4.14)

⇐⇒ obsf k
q′(f, c, Bi) = obsf k

q′(f, c, Si) (by Observation 4.11)

Theorem 4.16 Rt is the coarsest forward bisimulation on M .

Proof The relations Ri and Pi are such that, for every i ∈ [0, t];

• Ri is stable with respect to Pi (Lemma 4.13), and
• if R is a stable refinement of R0, then R is also a refinement of Ri (Lemma 4.15).

The time complexity of the backward bisimulation algorithm is computed from the same as-
sumptions and notations as in Section 3.2. In addition, given a block Bi, we denote by δf

Bi
the

part of of the transition table δ that contains transitions of the form f(q1 · · · qk) → q, where
q ∈ Bi. Although the computations are quite similar, they differ in that when the backward
algorithm would examine every transition in δbBi, the forward algorithm consider only those in
δf
Bi

. Since the latter set is on average a factor r̂ smaller, we are able to obtain a proportional
speed-up of the algorithm.

Observation 4.17 The overall time complexity of the algorithm is

O
(

Init
f +

∑

i∈[0,t−1]

(

Selecti + Cuti + Split
f
i + Split

f,ϕ
i

)

+ Aggregate
f
)

,

where Init
f , Selecti, Cuti, Split

f
i , Split

f,ϕ
i , and Aggregate

f are the complexity of: the
initialisation phase; the choice of Si and Bi; the computation of Pi \ cut (Bi); the computation
of Ri \ splitf (Bi); the computation of Ri \ splitn (Si, Bi); and the construction of the aggregated
automaton (M/Rt); respectively.

Lemma 4.18 Init
f is in O(r̂m + n).

Proof The single block of P0 can be initialised in O(n) steps. By Lemma 4.20, we can
calculate splitf (Q), and thus initialise R0, in time O(r̂ |δf

Q|) = O(r̂ |δ|) = O(r̂m).

Lemma 4.19 The derivation of splitf (B), where B ⊆ Q, is in O(r̂ |δf
B|).
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Proof The computation is divided into two parts: for each entry transition f(q1, . . . , qk) → q

in δf
B and i in [1, k], the value of obsf k

qi
(f, q1 · · · qi−12 qi+1 · · · qk, B) is increased by one. Since

this requires us to iterate over the sequence of states q1, . . . , qk, the time required is in O(r̂ |δf
B|).

The set splitf (B) can thereafter be derived by hashing each state q in Q using (obsf k
q )k∈[0,r̂] on

the domain
⋃

k∈[0,r̂]
(Σ(k) × Ck

Q × {B})

as key. Parallel to the hash process the lists R-blocks, P-blocks, and P-compound are updated
to reflect the changes in R. We note that each entry f(c[[q]]) → q′ in δf

B can give rise to
at most r̂ elements in the support of (obsf k

q )q∈Q,k∈N. It follows that the size of the support
of (obsf k

q )q∈Q,k∈N does not exceed O(r̂ |δf
B|), so the time required to hash the states in Q is

determined by the time it takes to compute their hash keys.

Lemma 4.20 Split
f
i is in O(r̂ |δf

Bi
|).

Lemma 4.21 Split
f,ϕ
i is in O(r̂ |δf

Bi
|).

Proof To compute Split
f,ϕ
i , we must calculate obsf k

q (f, c, Si) and obsf k
q (f, c, Bi) for every

q ∈ Q, before taking differences. The latter task can be done in O(r̂ |δf
Bi
|), and since Si is equal

to Bj or Sj \ Bj for some j < i, we already know the value obsf k
q (f, c, Si) for every q ∈ Q, so

we have the desired result.

Lemma 4.22 Aggregate
f is in O(r̂m + n).

We omit the proof of Lemma 4.22 as it is quite similar to that of Lemma 3.29.

Theorem 4.23 The minimisation algorithm is in O(r̂m log n).

Proof By Observations 3.24 and 4.17, together with Lemmata 3.25 and 4.18 through 4.22,
the overall time complexity of the algorithm can be written as

O
(

(r̂m + n) +
∑

i∈[0,t−1]
(1 + |Bi| + r̂ |δf

Bi
| + r̂ |δf

Bi
|) + (r̂m + n)

)

.

Omitting the smaller terms and simplifying, we obtain O
(

r̂
∑

i∈[0,t−1] |δ
f
Bi
|
)

. By Lemma 3.30,

no state occurs in more than log n distinct B-blocks, so no transition in δ will contribute by
more than log n to the total sum. As there are m transitions, the overall time complexity of
the algorithm is O(r̂m log n).

We next consider minimisation via forward bisimulation on deterministic (bottom-up) tree au-
tomata. We show that forward bisimulation minimisation coincides with classical minimisation
and yields the minimal deterministic tree automaton.

Definition 4.24 We say that M is deterministic (respectively, complete), if for every symbol f
in Σ(k), and sequence (q1, . . . , qk) ∈ Qk of states there exists at most (respectively, at least) one
state q in Q such that f(q1, . . . , qk) → q is in δ. 2

It is an important observation that (M/R) is also deterministic and complete whenever M is
so and R is a forward bisimulation on M . Moreover, it is known that there exists a unique (up
to isomorphism) minimal complete and deterministic nta N that recognises L(M). The next
theorem shows that N is isomorphic to (M/R) if R is the coarsest forward bisimulation on M .
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Theorem 4.25 Let M be a deterministic and complete nta without useless states. Then
(M/Rt) is a minimal deterministic and complete nta recognising L(M).

Proof Let M ′ = (Q′, Σ, δ′, F ′) be the unique (up to isomorphism) minimal deterministic and
complete nta such that L(M ′) = L(M). We prove that there exists a forward bisimulation R
on M such that (M/R) and M ′ are isomorphic. By minimality of M ′ such a bisimulation must
be the coarsest bisimulation Rt on M .

We define the relation ı = {(q, q′) ∈ Q × Q′ | L(M)q ∩ L(M ′)q′ 6= ∅}. Since M has no useless
states we have that L(M)q 6= ∅ for every state q ∈ Q. Moreover, for every state q ∈ Q there
exists a state q′ ∈ Q′ such that L(M)q ⊆ L(M ′)q′ . Hence for every state q ∈ Q there exists a
state q′ ∈ Q′ such that (q, q′) ∈ ı. Moreover, since M ′ is complete, for every tree t ∈ TΣ, there
exists exactly one state q′ ∈ Q′ such that t ∈ L(M ′)q′ , and thus, for every state q ∈ Q there
exists at most one state q′ ∈ Q′ such that (q, q′) ∈ ı. Thus ı : Q → Q′. Now suppose that there
exists a state q′ ∈ Q′ so that there exists no state q ∈ Q with ı(q) = q′. Clearly, L(M ′)q′ = ∅
which contradicts to the minimality of M ′. Thus ı is surjective.

Let R = ker(ı), which, by definition, is an equivalence relation. We first prove Condition (i) of
Definition 4.2. Let (p, q) ∈ R. We have to prove that p ∈ F if and only if q ∈ F . Since M has
no useless states, there exist trees t and u in TΣ such that t ∈ L(M)p and u ∈ L(M)q. Because
L(M)p ⊆ L(M ′)ı(p) and L(M)q ⊆ L(M ′)ı(q) and L(M ′) = L(M) we easily observe that

p ∈ F ⇐⇒ t ∈ L(M) ⇐⇒ t ∈ L(M ′) ⇐⇒ ı(p) ∈ F ′

⇐⇒ ı(q) ∈ F ′ ⇐⇒ u ∈ L(M ′)ı(q) ⇐⇒ u ∈ L(M)q ⇐⇒ q ∈ F .

Now to Condition (ii). For every symbol f in Σ(k), context c in CQ
(k), there exist unique states

p′ and q′ in Q such that f(c[[p]])
δ
→ p′ and f(c[[q]])

δ
→ q′ because M is deterministic and complete.

Thus it only remains to show that (p′, q′) ∈ R. We observe that ı(p′) = ı(q′) if and only if there
exists a state r′ ∈ Q′ such that L(M)p′ ∩ L(M ′)r′ and L(M)q′ ∩ L(M ′)r′ are nonempty. By
assumption, (p, q) ∈ R and thus there exists a state r ∈ Q′ and trees s and s′ of TΣ such that

s ∈ L(M)p ∩ L(M ′)r s′ ∈ L(M)q ∩ L(M ′)r .

Let c = q1 · · · qi−12qi+1 · · · qk for some i ∈ [1, k] and q1, . . . , qk ∈ Q. Since M has no useless
states, for every j ∈ [1, k] there exists a tree sj ∈ TΣ such that sj ∈ L(M)qj

. Since M ′ is
deterministic and complete, we obtain that there exists a state r′ ∈ Q′ such that

{f [s1, . . . , si−1, s, si+1, . . . , sk], f [s1, . . . , si−1, s
′, si+1, . . . , sk]} ⊆ L(M ′)r′ .

Clearly,

f [s1, . . . , si−1, s, si+1, . . . , sk] ∈ L(M)p′ and f [s1, . . . , si−1, s
′, si+1, . . . , sk] ∈ L(M)q′ .

This proves that the intersections L(M)p′ ∩ L(M ′)r′ and L(M)q′ ∩ L(M ′)r′ are nonempty,
and thus (p′, q′) ∈ R. Hence Condition (ii) of Definition 4.2 is fulfilled and R is a forward
bisimulation on M .

It remains to prove that the aggregated nta (M/R) is isomorphic to M ′. Clearly, the nta (M/R)
is deterministic and complete, has |Q′| states, and L((M/R)) = L(M) = L(M ′) by Theorem 4.5.
Thus (M/R) is a minimal complete dta recognising L(M).
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trees original backward forward b after f f after b
states rules states rules states rules states rules states rules

58 353 353 252 252 286 341 185 240 180 235

161 953 953 576 576 749 905 378 534 356 512

231 1373 1373 781 781 1075 1299 494 718 468 691

287 1726 1726 947 947 1358 1637 595 874 563 842

Table 1: Reduction of states and rules by using the forward and backward bisimulation min-
imisation algorithms

5 Implementation

In this section we present some experimental results that we obtained by applying a prototype
implementation of Algorithm 1 to the problem of language modelling in the natural language
processing domain [9].

A language model is a formalism for determining whether a given sentence is in a particular
language. Language models are particularly useful in many applications of natural language and
speech processing such as translation, transliteration, speech recognition, character recognition,
etc., where transformation system output must be verified to be an appropriate sentence in the
domain language. Recent research in natural language processing has focused on using tree-
based models to capture syntactic dependencies in applications such as machine translation [6,
16]. Thus, the problem is elevated to determining whether a given syntactic tree is in a language.
Language models are naturally representable as finite-state acceptors. For efficiency and data
sparsity reasons, whole sentences are not typically stored, but rather a sliding window of partial
sentences is verified. In the string domain this is known as n-gram language modelling. We
instead model n-subtrees, fixed-size pieces of a syntactic tree.

We prepared a data set by collecting 3-subtrees, i.e. all subtrees of height 3, from sentences
taken from the Penn Treebank corpus of syntactically bracketed English news text [11]. An
initial nta was constructed by representing each 3-subtree in a single path. We then wrote an
implementation of the forward and backward variants of Algorithm 1 in Perl and applied them
to data sets of various sizes of 3-subtrees. To illustrate that the two algorithms perform different
minimisations, we then ran the forward algorithm on the result from the backward algorithm,
and vice-versa. As Table 1 shows, the combination of both algorithms reduces the automata
nicely, to less than half the size (in the sum of rules and states) of the original.

Conclusion

We have introduced a general algorithm for bisimulation minimisation of tree automata and
discussed its operation under forward and backward bisimulation. The algorithm has attractive
runtime properties and is useful for applications that desire a compact representation of large
non-deterministic tree automata. We plan to include a refined implementation of this algorithm
in a future version of the tree automata toolkit described in [12].
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