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1 Introduction

1.1 Minimisation algorithms

By the Myhill-Nerode theorem there exists, for every regular string language L, a unique – up to
isomorphism – minimal deterministic finite automaton (dfa) that recognises L. In the beginning
of the 1970’s, several minimisation algorithms for finite automata were known, though all had
a computational complexity of O

(

n2
)

or worse, where n is the number of states of the input
automaton. It was then something of a breakthrough when John Hopcroft presented an O(n log n)
algorithm for dfa in [18]. This bound, which to date has not been improved, was obtained by
partitioning the state space of the input automaton through a “process the smaller half” strategy.
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It was well-known at the time that there is, in general, no unique minimal nondeterministic finite
automaton (nfa) that recognises a given regular language, but hope of an efficient algorithm capable
of deriving a minimal automaton still flourished. The search for such an algorithm was cancelled two
years later when Alain Meyer and Larry Stockmeyer proved that minimisation of nfa is PSPACE
complete [30]. As it turned out, the minimisation problem for nfa with n states cannot even be
efficiently approximated within the factor o(n), unless P = PSPACE [16]. This meant that the
problem had to be simplified; either by restricting the domain to a smaller class of devices, or by
surrendering every hope of a non-trivial approximation bound.

Algorithms that minimise their input automata with respect to bisimularity are examples of the
latter approach. The concept of bisimularity was introduced in 1980 by the British computer
scientist Robin Milner as a formal tool for investigating labelled transition systems. Simply put, two
transition systems are bisimulation equivalent if their behaviour – in response to a given sequence
of actions – cannot be distinguished by an outside observer. Although bisimulation equivalence, as
interpreted for various devices, implies language equality, the opposite does not hold in general.

1.2 Weighted tree automata

Weighted tree automata [4, 23, 6] generalise both finite tree automata [14, 15] and weighted string
automata: classical tree automata can be seen as weighted tree automata with weights in the
Boolean semiring, i.e. a transition has weight true if it is present, and false otherwise. Let us
shortly recall the model of [6]. A weighted tree automaton (for short: wta) is a tuple (Q,Σ,A, F, µ)
where Q is the finite set of states; Σ is the ranked alphabet of input symbols; A = (A, +, ·, 0, 1) is
the semiring of coefficients (or alternatively: weights); F : Q → A is the final weight distribution;

and µ = (µk)k≥0 with µk : Σ(k) → AQk×Q is the tree representation. The tree representation assigns

to each k-ary input symbol a (Qk ×Q)-indexed matrix over the coefficients. Intuitively, the weight
of a transition σ(q1, . . . , qk) → q is µk(σ)q1···qk,q. If the weight is 0, then this essentially means that
the transition is absent.

The wta processes an input tree of the form σ[t1, . . . , tk] by first processing the subtrees t1, . . . , tk
and then processing the remaining symbol σ. The such obtained weights are combined with the
semiring multiplication and nondeterminism is resolved with the addition; i.e., we sum over all
combinations of states that the wta could be in after processing t1, . . . , tk. Formally, the mapping
hµ : TΣ → AQ is defined as follows:

hµ(σ[t1, . . . , tk])q =
∑

q1,...,qk∈Q

µk(σ)q1···qk,q · hµ(t1)q1 · . . . · hµ(tk)qk
.

The semantics of the wta is a (formal) tree series, which is a mapping of type TΣ → A. The
semantics of the wta assigns to an input tree t the F -weighted sum of the components of hµ(t).
Thus, the coefficient of t is

∑

q∈Q F (q) · hµ(t)q. A tree series that can be computed by a wta is
called recognisable.

The minimisation of the representation of a recognisable tree series over fields is already considered
in [9, 8], but a formal complexity analysis is missing. In this report, we will consider procedures for
arbitrary commutative semirings. Since minimisation is PSPACE complete in certain commutative
semirings, we only consider minimisation with respect to a bisimulation relation.
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1.3 Forward vs. backward bisimulation

The idea behind bisimulation minimisation is to discover and unify states that in some sense
exhibit the same behaviour, thus freeing the input automaton of redundancy. This implies in
effect a search for the coarsest relation on the state space that meets the local conditions of the
bisimulation relation that we are interested in.

One type of bisimulation, called forward bisimulation in [10, 17], restricts bisimilar states to have
identical futures. The future of a state q is the tree series of contexts that is recognised by the
wta if the computation starts with the state q and weight 1 at the unique position of the special
symbol 2 in the context. A similar condition is found in the Myhill-Nerode congruence [22] for
a tree language or even in the Myhill-Nerode congruence [5] for a tree series. Let us explain
it on the latter. Two trees t and u are equal in the Myhill-Nerode congruence for a given tree
series S over the field (A, +, ·, 0, 1), if there exist nonzero coefficients a, b ∈ A such that for all
contexts C we observe that a−1 · (S, C[t]) = b−1 · (S, C[u]). In this expression, the coefficients
a and b can be understood as the weights of t and u, respectively. Both sides of the previous
equation can be understood as futures; the futures St and Su are given for every context C by
(St, C) = a−1 · (S, C[t]) and (Su, C) = b−1 · (S, C[u]). Roughly speaking, in St a context is assigned
the weight of C[t] in S with the weight of t cancelled out. In other words, trees t and u are equal
if and only if their futures St and Su coincide. In contrast to the Myhill-Nerode congruence,
a forward bisimulation requires a local condition on the tree representation. This local condition
is strong enough, so that the equivalence of the futures of bisimilar states is enforced. On the
other hand, the condition is not too strong which is shown by the fact that, on a deterministic
all-accepting wta M over a field, minimisation via forward bisimulation yields the unique (up to
isomorphism) minimal deterministic all-accepting wta that recognises the same tree series as M
(see Theorem 3.12).

Let us look at the local condition for forward bisimilar states in more detail. Suppose that we
have a sequence (q1, . . . , qk) of states and a state pi that is supposed to be bisimilar to some qi

(with 1 ≤ i ≤ k). First, the final weight of pi should be exactly the final weight of qi (other-
wise the futures would not coincide with respect to the context 2). Second, bisimilar states are
indistinguishable, so we consider a group D of bisimilar states next. If the transition weights of
σ-transitions from (q1, . . . , qk) to some state q in D sum to a, then the weights of σ-transitions
from (q1, . . . , qi−1, pi, qi+1, . . . , qk) to states of D should also sum to a. The states pi and qi can
only have the same futures if in all circumstances they can process the same input symbol such
that bisimilar states p and q (which have the same future) are reached with the same weight.

Forward bisimulation minimisation is effective on (bottom-up) deterministic wta. In fact, we show
that minimisation via forward bisimulation on a deterministic all-accepting [12] wta M over a field
computes the unique (up to isomorphism) minimal deterministic all-accepting wta [12] recognising
the same tree series as M (see Theorem 3.12). More importantly, it is shown in Corollary 3.33
that the (asymptotic) time-complexity of our minimisation algorithm on such a wta is O(m log n)
where m is the number of transitions and n is the number of states. In [12, Lemma 3.7] a Myhill-

Nerode theorem for these wta is shown (which is essentially an instance of [7, Theorem 7.4.1]),
but the complexity of minimisation is not discussed.

The other type of bisimulation we will consider is called backward bisimulation in [10, 17]. Backward
bisimulation also uses a local condition on the tree representation that enforces that the past of
any two bisimilar states is equal. The past of a state is the series that is recognised by the wta if
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that particular state would be the only final state and its final weight would be 1 (i.e., the past
of a state q is the series that maps an input tree t to hµ(t)q; see Section 2). Let us illustrate the
local condition for backward bisimulation. Suppose that the states p and q are bisimilar. Again we
group transitions by blocks D1, . . . , Dk of bisimilar states. For p and q to be bisimilar, it should be
true that whenever the weights of σ-transitions from states of D1 × · · · × Dk to p sum to a, then
the weights of σ-transitions from D1 × · · ·×Dk to q should also sum to a. Of course, the condition
should also hold with the roles of p and q exchanged. Since bisimilar states have the same past and
the transitions into p and q have the same weight, the states p and q also have the same past.

1.4 Algorithms

As we shall see, the standard minimisation algorithm for deterministic tree automata [11] can
be generalised to work with respect to either type of bisimulation: rather than discriminating
between states based on their behaviour with respect to a right congruence, we ascertain that the
local conditions of a bisimulation relation are fulfilled. Unfortunately, the counting argument used
in [34] and later in [17] is no longer applicable: it was devised for the Boolean semiring and does not
generalise. For unrestricted semirings, the resulting algorithms thus run in time O(rmn), where r is
the maximum rank of the input alphabet, m is the size of the transition table, and n is the number
of states. However, in the special case when the underlying semiring is additively cancellative, i.e.
when a + b = a + c implies that b = c, this time bound can be reduced to O(rm log n) for forward
bisimulation, and O(r2m log n) for backward bisimulation, using Hopcroft’s “process the smaller
half” strategy. When string languages are considered, r is equal to one and can thus be omitted
from the complexity expressions.

Our general approach is iterative. Initially, all states are assumed to be bisimilar, and are for this
reason grouped together in the one-block equivalence relation R0. If we then discover pairs of states
in Ri that are provably not bisimilar, then we remove these to derive a finer relation Ri+1. This
refinement process continues until all offending pairs have been cleared, and yields upon termination
the coarsest bisimulation relation on the state space of the input automaton. As indicated by
Lemma 3.8, one could also work in the opposite direction by starting with the finest possible
bisimulation, i.e. the identity, and then successively relaxing it. Both possibilities of constructing
the coarsest bisimulation are discussed in [10] for string automata. In particular, the method of
deriving the coarsest forward bisimulation that is suggested in Theorem 3.7 of [10] coincides with the
non-optimised version of our forward bisimulation algorithm when the input signature is monadic.

The type of bisimulation introduced in [1] can in retrospect be seen as a combination of backward
and forward bisimulation. Containing the restrictions of both, this hybrid is less efficient than back-
ward bisimulation when applied to the minimisation of nondeterministic tree automata, although
it is just as expensive to calculate, and unlike forward bisimulation it does not yield the standard
algorithm when applied to deterministic tree automata. The pair of algorithms presented in this
paper thus supersedes that of [1].

1.5 Applications

Automata theory in general has been of great use to the field of natural language processing, as the
ability to represent linguistic functions in a formal computational model enables sound reasoning
and clean computation. The representation of formalisms that operate on words and phrases as
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chains of nondeterministic acceptors and transducers has been shown to be useful for rapid system
construction and greater understanding and modularity (e.g. [24, 3, 38, 36]). In more recent work,
however, there has been a desire to use models that consider syntactic structure as an elementary
unit, and thus tree automata are a more natural fit than the previously exploited string-based
automata. Work has progressed on transformation of elaborate syntax-based natural language
systems into simple sequences of tree acceptors and transducers [21]. And as the development
of efficient general algorithms for string automata [31, 33] and their subsequent incorporation in
toolkits [32] made the rapidly-constructed string-based systems possible, so too is there ongoing
development of tree-based elevations of these efficient algorithms [29] with the goal of constructing
a tree automata toolkit [28] that will benefit from the contributions of this work.

Both minimisation algorithms have been implemented as prototypes in Perl. There are advan-
tages that support having two types of bisimulation minimisation. First, forward and backward
bisimulation minimisation only yield a minimal wta with respect to the corresponding notion of
bisimulation. Thus applying forward and backward bisimulation minimisation in an alternating
fashion might yield an even smaller wta than just the application of a single forward or backward
bisimulation minimisation. Since both minimisation procedures are very efficient, this approach
also works in practice. For the problem of minimisation of lookup tables for tree language mod-
elling, discussed in Section 6, we minimised our candidate wta in an alternating fashion and found
that we were able to get equally small wta after two iterations beginning with backward or three
iterations beginning with forward.

Second, in certain domains only one type of bisimulation minimisation will be effective. Let us, for
example, consider deterministic wta. We will provide some arguments that show that backward
bisimulation will be ineffective on deterministic wta (provided that the wta has no useless states).
For any two backward bisimilar states, their recognised series coincide (see Corollary 4.7). However,
in a deterministic wta we have the property that, for any two states, the supports of the series
recognised in those states do not overlap. This yields that every deterministic wta without useless
states is minimal with respect to backward bisimulation; thus backward bisimulation minimisation is
ineffective in that domain. This also means that the alteration technique is useless for deterministic
devices, because two applications of forward bisimulation do not accomplish more than one, and
backward bisimulation has no effect at all.

2 Preliminaries

Sets, numbers, and relations We write N to denote the set of natural numbers including zero.
The subset {k, k + 1, . . . , n} of N is abbreviated to [k, n], and the cardinality of a set S is denoted
by |S|. We abbreviate the Cartesian product S×· · ·×S with n factors by Sn, and the membership
di ∈ Di for all i ∈ [1, k] as d1 · · · dk ∈ D1 · · ·Dk. Finally, we write ε for the empty word.

Let P and R be equivalence relations on S. We say that P is coarser than R (or equivalently: R
is a refinement of P), if R ⊆ P. The equivalence class (or block) of an element s ∈ S with respect
to R is the set [s]R = {s′ | (s, s′) ∈ R}. Whenever R is obvious from the context, we simply
write [s] instead of [s]R. It should be clear that [s] and [s′] are equal if s and s′ are in relation R,
and disjoint otherwise, so the equivalence relation R induces a partition (S/R) = {[s] | s ∈ S} of S.

Algebraic structures A monoid is a set A together with a binary operation · from A×A to A
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and an element 1 in A that satisfy the following two axioms:

[M1] The operation · is associative in that for every three elements a, b, and c in A, it holds that
(a · b) · c is equal to a · (b · c).

[M2] The element 1 is the neutral element with respect to · ; i.e., we have a · 1 = 1 · a = a, for all
a ∈ A.

A monoid (A, ·, 1) is commutative if a · b = b · a, for all a, b in A.

Moreover, a semiring is a tuple (A, +, ·, 0, 1) where

[SR1] (A, +, 0) is a commutative monoid and

[SR2] (A, ·, 1) is a monoid.

[SR3] For every a, b, and c in A, it holds that (a + b) · c equals (a · c) + (b · c) and a · (b + c) equals
(a · b) + (a · c), i.e. the multiplicative operation distributes over the additive.

[SR4] For every a in A, we have that a · 0 = 0 · a = 0. In other words, the element 0 is absorptive.

[SR5] Finally, 0 and 1 are distinct elements.

Operations with multiplicative symbols (like ·) are generally assumed to bind stronger than oper-
ations that are written additively (like +). Hence we interpret a + b · c as a + (b · c). We now list
a number of properties that a semiring A = (A, +, ·, 0, 1) may or may not have. The semiring A is
said to be . . .

• commutative if its multiplicative monoid (A, ·, 1) is also a commutative monoid,

• zero-sum free if a + b = 0 implies that a = b = 0 for all elements a and b,

• zero-divisor free if a · b = 0 implies that a = 0 or b = 0 for all elements a and b,

• additively cancellative if a + b = a + c implies that b = c for all elements a, b, and c,

• multiplicatively cancellative if a 6= 0, together with a · b = a · c or b · a = c · a, implies that
b = c for all elements a, b, and c,

• a ring if for every element a there exists an additive inverse (−a) ∈ A such that a+(−a) = 0,

• a semifield if for every nonzero element a there exists an multiplicative inverse a−1 ∈ A such
that a · a−1 = 1, and

• a field if A is a ring and a semifield.

Tree automata A ranked alphabet is a finite set of symbols Σ =
⋃

k∈N
Σ(k) which is partitioned

into pairwise disjoint subsets Σ(k). The set TΣ of trees over Σ is the smallest set of strings over Σ
such that f t1 · · · tk is in TΣ for every f in Σ(k) and all t1, . . . , tk in TΣ. To improve readability we
write f [t1, . . . , tk] instead of f t1 · · · tk unless k is zero.
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A tree series over the ranked alphabet Σ and the semiring A = (A, +, ·, 0, 1) is a mapping from
TΣ to A. The set of all tree series over Σ and A is denoted by A〈〈TΣ〉〉. We also introduce an
alternative notation for a tree series S ∈ A〈〈TΣ〉〉: the image S (t) ∈ A of a tree t ∈ TΣ is called the
coefficient of t and, analogously to power series in analysis, the coefficient of t is denoted by (S, t).
The tree series S can thus be rewritten as the formal sum

∑

t∈TΣ
(S, t) t. A tree t ∈ TΣ is said to

be in the support of S, written supp(S), if and only if (S, t) is non-zero.

A weighted tree automaton M (for short: wta) is a tuple (Q,Σ,A, F, µ), where

• Q is a finite nonempty set of states;

• Σ is a ranked alphabet (aka. the input alphabet);

• A = (A, +, ·, 0, 1) is a semiring;

• F ∈ AQ is a final weight distribution; and

• µ = (µk)k∈N with µk : Σ(k) → AQk×Q, k ∈ N, is a tree representation.

The initial algebra semantics of the wta M is determined by the mapping hµ that takes TΣ to AQ

and is given by

hµ(σ[t1, . . . , tk])q =
∑

q1,...,qk∈Q

µk(σ)q1···qk,q · hµ(t1)q1 · . . . · hµ(tk)qk

for every symbol σ ∈ Σ(k), q ∈ Q, and trees t1, . . . , tk ∈ TΣ. The tree series recognised by M ,
denoted by ‖M ‖, is defined by

(‖M ‖, t) =
∑

q∈Q

Fq · hµ(t)q

for every tree t ∈ TΣ. A tree series is recognisable if there exists a wta that recognises it.

3 Forward bisimulation

3.1 Foundation

In this section we introduce the concept of a forward bisimulation. Roughly speaking, a forward
bisimulation is an equivalence relation on the states of a wta such that equivalent states react
equivalently to future inputs. We enforce this behaviour with only a local condition on the tree
representation and a condition on the final weight distribution.

First we introduce the notion of a context. A context is a string of states that has a placeholder
(the special symbol 2) at exactly one position. Essentially, the forthcoming definition of forward
bisimulation uses such contexts where the placeholder is replaced by a particular state.

Definition 3.1 Let Q be a set such that 2 /∈ Q. The set CQ
(k) of contexts (over Q) is given by

{w ∈ (Q ∪ {2})k | w contains 2 exactly once} ,

and for every c ∈ CQ
(k) and q ∈ Q we write c[[q]] to denote the word that is obtained from c by

replacing the special symbol 2 with q. 2
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Henceforth, we assume that the special symbol 2 occurs in no set of states of any wta. By a simple
renaming of states this property can easily be guaranteed.

Definition 3.2 (cf. [10, Definition 3.1]) Let M = (Q,Σ,A, F, µ) be a wta, and let R ⊆ Q×Q
be an equivalence relation on Q. We say that R is a forward bisimulation on M if for every (p, q)
in R

(i) F (p) = F (q); and

(ii) for every symbol σ in Σ(k), block D in (Q/R), and context c of CQ
(k) we have that

∑

r∈D

µk(σ)c[[p]],r =
∑

r∈D

µk(σ)c[[q]],r . 2

We note that Condition (ii) of Definition 3.2 is trivially fulfilled for nullary symbols σ. Let
us illustrate the definition of forward bisimulation on an example. We will define a tree se-
ries zigzag : T∆ → N and show that it is recognisable over the semiring of the natural numbers.
We then guess an equivalence relation P on the states of the constructed wta N and validate that P
is indeed a forward bisimulation on N .

Example 3.3 Let ∆ = ∆(0) ∪ ∆(2) be the ranked alphabet where ∆(0) = {α} and ∆(2) = {σ}.
The mapping zigzag from T∆ to N is defined for every t1, t2, and t3 in T∆ by

zigzag(α) = 1

zigzag(σ[α, t2]) = 2

zigzag(σ[σ[t1, t2], t3]) = 2 + zigzag(t2) .

Consider now the wta N = (P, ∆, N, G, ν) with the underlying semiring N = (N, +, ·, 0, 1) of
natural numbers (with the usual addition and multiplication operations) that recognises zigzag.
The remaining components of N are given by P = {l, r, L, R,⊥}, G(l) = G(L) = 1 and G(p) = 0
for every p ∈ {r, R,⊥}, and

1 = ν0(α)ε,l = ν0(α)ε,R = ν0(α)ε,⊥

1 = ν2(σ)r⊥,l = ν2(σ)⊥l,r = ν2(σ)⊥⊥,l

1 = ν2(σ)R⊥,L = ν2(σ)⊥L,R = ν2(σ)⊥⊥,R

1 = ν2(σ)⊥⊥,⊥ .

Note that all remaining entries in ν are 0. The wta N is displayed in Figure 1 (in the represen-
tation of [7]). A straightforward induction shows that N does indeed recognise zigzag. Let us
consider the equivalence relation P = {l, L}2 ∪ {r, R}2 ∪ {⊥}2 on P . We argue that P is a forward
bisimulation on N . Obviously, G(l) = G(L) and G(r) = G(R). It remains to check Condition (ii)
of Definition 3.2. We only demonstrate the computation on one example, namely for the symbol σ,
the states l and L, the context ⊥2, and the block {r, R}.

∑

p∈{r,R}

ν2(σ)⊥l,p = 1 =
∑

p∈{r,R}

ν2(σ)⊥L,p

Overall, it can be verified that P is a forward bisimulation on N . 2
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L r

⊥

R l

⊥

l r

Figure 1: The wta of Example 3.3(left) and the aggregated wta of Example 3.5(right); every binary
transition is labelled with σ/1 and every nullary transition with α/1 and final weights are 1 for
doubly-circled states and 0 otherwise.

We identify bisimilar states in order to reduce the size of the wta. For the moment, we suppose that
a wta M = (Q,Σ,A, F, µ) and a forward bisimulation R on M are given. In Section 3.2 we show
how a particular, namely the coarsest, forward bisimulation on M can be computed efficiently. Next
we present how to reduce the size of M with the help of R. In essence, we construct a wta (M/R)
that uses only one state per equivalence class of R.

Definition 3.4 (cf. [10, Definition 3.3]) The (forward) aggregated wta (M/R) [10] (with respect
to M and R) is the wta (Q′, Σ,A, F ′, µ′) given by

• Q′ = (Q/R);

• F ′([q]) = F (q) for every state q of Q; and

• for every symbol σ ∈ Σ(k), word q1 · · · qk ∈ Qk, and block D ∈ (Q/R)

µ′
k(σ)[q1]···[qk],D =

∑

r∈D

µk(σ)q1···qk,r .

The wta (M/R) is well-defined because R is a forward bisimulation on M . 2

The above definition shows how states are collapsed. It is clear that the reduced wta (M/R) will
have as many states as there are equivalence classes with respect to R, and thus never more states
than M . Let us present an example of an aggregated wta.

Example 3.5 Recall the wta N and the forward bisimulation P of Example 3.3. Let us compute
the wta (N/P) = (P ′, ∆, N, G′, ν ′). Clearly, we obtain the states P ′ = {[l], [r], [⊥]}, the final weights
G′([l]) = 1 and G′([r]) = G′([⊥]) = 0 and the tree representation entries

1 = ν ′
0(α)ε,[l] = ν ′

0(α)ε,[r] = ν ′
0(α)ε,[⊥]

1 = ν ′
2(σ)[r] [⊥],[l] = ν ′

2(σ)[⊥] [l],[r]

1 = ν ′
2(σ)[⊥] [⊥],[l] = ν ′

2(σ)[⊥] [⊥],[r] = ν ′
2(σ)[⊥] [⊥],[⊥] .
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All remaining entries in ν ′ are 0. A graphical representation of (N/P) can be found in Figure 1.
Thus we now have only 3 states and 8 transitions instead of the 5 states and 10 transitions we used
in the wta of Example 3.3. 2

Thus our reduction technique seems to work. Of course, we should verify that the recognised tree
series remains the same. The proof of this property is prepared in the next lemma. It essentially
states that some collapsed state of (M/R) works like the combination of its constituents in M .

Lemma 3.6 (cf. [10, Theorem 3.1]) Let (M/R) = (Q′, Σ,A, F ′, µ′). Then, for every tree t ∈ TΣ

and block D ∈ (Q/R),

hµ′(t)D =
∑

q∈D

hµ(t)q .

Proof We prove the statement by induction on t. Let t = σ[t1, . . . , tk] for some symbol σ ∈ Σ(k)

and sequence of subtrees t1, . . . , tk ∈ TΣ. For every index i ∈ [1, k] and Di ∈ (Q/R) we have
hµ′(ti)Di

=
∑

qi∈Di
hµ(ti)qi

by induction hypothesis. With this in mind, we reason as follows.

hµ′(σ[t1, . . . , tk])D

=
∑

D1,...,Dk∈(Q/R)

µ′
k(σ)D1···Dk,D ·

∏

i∈[1,k]

hµ′(ti)Di

=
∑

D1,...,Dk∈(Q/R)

µ′
k(σ)D1···Dk,D ·

∏

i∈[1,k]

(

∑

qi∈Di

hµ(ti)qi

)

(by induction hypothesis)

=
∑

D1,...,Dk∈(Q/R),
q1···qk∈D1···Dk

µ′
k(σ)D1···Dk,D ·

∏

i∈[1,k]

hµ(ti)qi

=
∑

D1,...,Dk∈(Q/R),
q1···qk∈D1···Dk

(

∑

q∈D

µk(σ)q1···qk,q

)

·
∏

i∈[1,k]

hµ(ti)qi
(by definition of µ′)

=
∑

q∈D

(

∑

q1,...,qk∈Q

µk(σ)q1···qk,q ·
∏

i∈[1,k]

hµ(ti)qi

)

=
∑

q∈D

hµ(σ[t1, . . . , tk])q

The final step establishes that ‖(M/R)‖ = ‖M‖ using the previous lemma. Consequently, any wta
obtained as (M/R) with R a forward bisimulation on M recognises the same tree series as the
wta M .

Theorem 3.7 (cf. [10, Theorem 3.1]) ‖(M/R)‖ = ‖M‖.

Proof Let (M/R) = (Q′, Σ,A, F ′, µ′), and let t ∈ TΣ be arbitrary. Then

(‖(M/R)‖, t) =
∑

D∈(Q/R)

F ′(D) · hµ′(t)D

=
∑

D∈(Q/R)

F ′(D) ·
(

∑

q∈D

hµ(t)q

)

(by Lemma 3.6)
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=
∑

D∈(Q/R),q∈D

F (q) · hµ(t)q (by definition of F ′)

=
∑

q∈Q

F (q) · hµ(t)q = (‖M‖, t) .

The coarser the forward bisimulation R on M , the smaller the aggregated wta (M/R). Our aim
is thus to find the coarsest forward bisimulation on M . An efficient algorithm that computes
this bisimulation is presented in Section 3.2. Here we only show that a unique coarsest forward
bisimulation on M exists.

Lemma 3.8 (cf. [10, Theorem 3.5]) Let R and P be forward bisimulations on M . Then there
exists a forward bisimulation R′ on M such that R∪ P ⊆ R′.

Proof Let R′ be the smallest equivalence containing R ∪ P. We now show that R′ is a forward
bisimulation on M . Let (p, q) ∈ R′. Thus there exist an integer n ∈ N and

(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ R ∪ P

such that p1 = p and pn = q. Thus F (p) = F (p1) = · · · = F (pn) = F (q). Now we move on to
Condition (ii) of Definition 3.2. Let σ be a symbol of Σ(k), D a block in (Q/R′), and c a context

in CQ
(k). Clearly, the block D is a union of blocks of (Q/R) as well as a union of blocks of (Q/P).

Thus Condition (ii) of Definition 3.2 is trivially met for all (pi, pi+1) ∈ R ∪ P. Now we verify the
condition for p and q.

∑

r∈D

µk(σ)c[[p1]],r =
∑

r∈D

µk(σ)c[[p2]],r = . . . =
∑

r∈D

µk(σ)c[[pn−1]],r =
∑

r∈D

µk(σ)c[[pn]],r

The above lemma does construct a coarser forward bisimulation given two forward bisimulations,
but it does not yield an efficient algorithm that computes the coarsest forward bisimulation on M .
However, since there are only finitely many equivalence relations on Q, there exists a unique coarsest
forward bisimulation on M .

Theorem 3.9 (cf. [10, Theorem 3.2]) There exists a coarsest forward bisimulation P on M ,
and the identity is the only forward bisimulation on (M/P).

Proof The existence of the coarsest forward bisimulation P follows from Lemma 3.8. The second
part of the statement is proved by contradiction, so suppose that (M/P) = (Q′, Σ,A, F ′, µ′) admits
a non-trivial forward bisimulation R′. Whenever we write [p] (with p ∈ Q) in the remaining proof,
we mean [p]P . Let P ′ = {(p, q) | ([p], [q]) ∈ R′}. Obviously, P ′ is an equivalence relation on Q. We
claim that P ′ is a forward bisimulation on M . This would contradict the assumption that P is the
coarsest forward bisimulation on M because P ⊆ P ′ and since R′ is not the identity it follows that
P ⊂ P ′.

Let (p, q) ∈ P ′. We start with Condition (i) of Definition 3.2. Since ([p], [q]) ∈ R′ we have
F ′([p]) = F ′([q]). Moreover, by Definition 3.4 we also have F (p) = F ′([p]) = F ′([q]) = F (q). It
remains to validate Condition (ii). To this end, let σ ∈ Σ(k) be a symbol, c = q1 · · · qi−12qi+1 · · · qk

be a context of CQ
(k) for some q1, . . . , qk ∈ Q and i ∈ [1, k], and D ∈ (Q/P ′) be a block. Clearly,
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the block D is a union D1 ∪ · · · ∪ Dn of pairwise different blocks D1, . . . , Dn ∈ (Q/P). Moreover,
D′ = {D1, . . . , Dn} is a block in (Q′/R′). Finally, let c′ = [q1] · · · [qi−1]2[qi+1] · · · [qk], which is a

context of CQ′

(k).

∑

r∈D

µk(σ)c[[p]],r =
∑

D′′∈D′

(

∑

r∈D′′

µk(σ)c[[p]],r

)

=
∑

D′′∈D′

µ′
k(σ)c′[[[p]]],D′′ (by Definition 3.4)

=
∑

D′′∈D′

µ′
k(σ)c′[[[q]]],D′′ (because ([p], [q]) ∈ R′)

=
∑

D′′∈D′

(

∑

r∈D′′

µk(σ)c[[q]],r

)

=
∑

r∈D

µk(σ)c[[q]],r (by Definition 3.4)

Thus P ′ is a strictly coarser forward bisimulation on M than P, which contradicts our assumption.
Hence the identity is the only forward bisimulation on (M/P).

The previous theorem justifies the name forward bisimulation minimisation; given the coarsest
forward bisimulation P on M , the wta (M/P) is minimal with respect to forward bisimulation.
It only admits the trivial forward bisimulation, and thus any further forward aggregated wta will
have as many states as (M/P).

We close this section with an analysis of forward bisimulation on (bottom-up) deterministic all-
accepting [12] wta. The rest of this section can be skipped on first reading. Our goal is to prove that
forward bisimulation minimisation coincides with classical minimisation and yields the unique (up
to isomorphism) minimal deterministic all-accepting wta recognising the given tree series. Before
we can discuss any details, let us formally define deterministic and complete weighted tree automata
and thereafter the all-accepting property [12]. Note that our notions coincide with the notions for
bottom-up weighted tree automata (see, e.g., [7]).

Definition 3.10 (cf. [7, Definition 4.1.1]) We say that M is deterministic (respectively, com-
plete), if for every symbol σ in Σ(k), and word q1 · · · qk of states in Q there exists at most (respec-
tively, at least) one state q of Q such that µk(σ)q1···qk,q 6= 0. 2

It is an important observation that (M/R) is deterministic whenever M is so. A similar observation
can be made for completeness, however, we additionally need that the underlying semiring is zero-
sum free. Finally, (M/R) is deterministic and complete provided that M is so.

It is known that, for every tree series S that is recognised by some deterministic all-accepting [12,
Section 3.2] wta over a multiplicatively cancellative and commutative semiring, there exists a unique
(up to isomorphism) minimal deterministic and complete all-accepting wta that recognises S [12,
25]. First we need to recall the concept of a dead state. Let P be a subset of the state space Q.
We call the states of P dead states if it holds that

• F (p) = 0 for every p ∈ P ; and

• for every symbol σ in Σ(k), and sequence of states q1, . . . , qk, q ∈ Q we have µk(σ)q1···qk,q = 0
if q /∈ P and there exists i ∈ [1, k] such that qi ∈ P .
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The above just restricts dead states to be non-final and inescapable. Now we can recall the all-
accepting property from [12]. We say that M is all-accepting [12] if for every set P ⊆ Q of dead
states

• |P | ≤ 1;

• µk(σ)q1···qk,p ∈ {0, 1} for every symbol σ ∈ Σ(k), word q1 · · · qk of states in Q, and p ∈ P ; and

• F (q) = 1 for all q ∈ Q \ P .

The name all-accepting is derived from the fact that alternatively we could have defined all-
accepting wta to be such that the final weight of every state is 1. However, this definition is
incompatible with the notion of completeness, so we presented a more involved definition.

We abbreviate all-accepting wta simply to aa-wta. Let M be a deterministic aa-wta. The tree se-
ries ‖M‖ is subtree-closed [12, Section 3.1]; i.e., for every tree t with (‖M‖, t) 6= 0 also (‖M‖, u) 6= 0
for every subtree u of t. We repeat [12, Observation 3.1] for ease of reference.

Observation 3.11 (see [12, Observation 3.1]) Let M be a deterministic aa-wta. Then ‖M‖
is subtree-closed. 2

Finally, for every q ∈ Q we denote by supp(Mq) the set {t ∈ TΣ | hµ(t)q 6= 0}. A state q of Q is
said to be useless if supp(Mq) = ∅. Note that, for a deterministic wta M over a zero-divisor free
semiring A, it can effectively be checked whether a state is useless. Now we can move on to our
main statement.

Theorem 3.12 Let M be a deterministic and complete aa-wta without useless states over some
multiplicatively cancellative and commutative semiring, and let P be the coarsest forward bisimu-
lation on M . Then (M/P) is the minimal deterministic and complete aa-wta recognising ‖M‖.

Proof Let M ′ = (Q′, Σ,A, F ′, µ′) be the unique (up to isomorphism) minimal deterministic
and complete aa-wta [12, 25] such that ‖M ′‖ = ‖M‖. We prove that there exists a forward
bisimulation R′ on M such that (M/R′) and M ′ are isomorphic. Since M ′ is minimal, such a
forward bisimulation must be the coarsest forward bisimulation P on M .

The relation ı ⊆ Q × Q′ is defined for every state q ∈ Q and state q′ ∈ Q′ by

(q, q′) ∈ ı ⇐⇒ supp(Mq) ∩ supp(M ′
q′) 6= ∅ .

Since the wta M has no useless states we have that supp(Mq) 6= ∅ for every state q ∈ Q. Moreover,
for every state q ∈ Q there exists a state q′ ∈ Q′ such that supp(Mq) ⊆ supp(M ′

q′). Hence for
every state q ∈ Q there exists a state q′ ∈ Q′ such that (q, q′) ∈ ı. Moreover, since the wta M ′ is
deterministic and complete, for every tree t ∈ TΣ there exists exactly one state q′ ∈ Q′ such that
t ∈ supp(M ′

q′), and thus, for every state q ∈ Q there exists at most one state q′ ∈ Q′ such that
supp(Mq) ∩ supp(M ′

q′) 6= ∅. Thus ı : Q → Q′ is a mapping.

Let R = ker(ı), which, by definition, is an equivalence relation. It remains to prove that R is a
forward bisimulation on M . Thus, let (p, q) ∈ R. First we verify Condition (i) of Definition 3.2.
We observe that there exist trees t and u of TΣ such that t ∈ supp(Mp) and u ∈ supp(Mq) because
p and q are not useless. Since supp(Mp) ∪ supp(Mq) ⊆ supp(M ′

ı(p)) and ‖M ′‖ = ‖M‖, we observe
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that F ′(ı(p)) = 1 if and only if F (p) = 1 because A is zero-divisor free. In addition, F ′(ı(q)) = 1 if
and only if F (q) = 1. Consequently, F (p) = F (q).

Now let us move on to Condition (ii) of Definition 3.2. Let σ be a symbol of Σ(k), D ∈ (Q/R) a

block, and c = q1 · · · qi−12qi+1 · · · qk be a context in CQ
(k) for some q1, . . . , qk ∈ Q and index i ∈ [1, k].

We need to prove that
∑

r′∈D

µk(σ)c[[p]],r′ =
∑

r′∈D

µk(σ)c[[q]],r′ .

Since the wta M is deterministic and complete, there exists exactly one state p′ ∈ Q and exactly
one state q′ ∈ Q such that

µk(σ)c[[p]],p′ 6= 0 and µk(σ)c[[q]],q′ 6= 0 .

We show that (p′, q′) ∈ R. First, we observe that ı(p′) = ı(q′) if and only if there exists a state
r ∈ Q′ such that supp(Mp′)∩supp(M ′

r) and supp(Mq′)∩supp(M ′
r) are nonempty. For every i ∈ [1, k]

there exist a state r′i ∈ Q′ and a tree ti ∈ TΣ such that

ti ∈ supp(Mqi
) ∩ supp(M ′

r′i
)

because M has no useless states. Let c′ = r′1 · · · r
′
i−12r′i+1 · · · r

′
k, which is a context of CQ′

(k). Since

M ′ is deterministic and complete, we obtain that there exists a unique state r ∈ Q′ such that
µ′

k(σ)c′[[ı(p)]],r 6= 0. Thus

{σ[t1, . . . , ti−1, t, ti+1, . . . , tk], σ[t1, . . . , ti−1, u, ti+1, . . . , tk]} ⊆ supp(M ′
r) .

Clearly, σ[t1, . . . , ti−1, t, ti+1, . . . , tk] ∈ supp(Mp′) and σ[t1, . . . , ti−1, u, ti+1, . . . , tk] ∈ supp(Mq′).
This proves that the intersections supp(Mp′)∩ supp(M ′

r) and supp(Mq′)∩ supp(M ′
r) are nonempty

and thus (p′, q′) ∈ R.

Thus our goal simplifies because

∑

r′∈D

µk(σ)c[[p]],r′ = µk(σ)c[[p]],p′ and
∑

r′∈D

µk(σ)c[[q]],r′ = µk(σ)c[[q]],q′

and we only have to prove that µk(σ)c[[p]],p′ = µk(σ)c[[q]],q′ . Obviously,

F (p′) · µk(σ)c[[p]],p′ ·
(

∏

j∈[1,k]\{i}

hµ(tj)qj

)

· hµ(t)p = (‖M‖, σ[t1, . . . , ti−1, t, ti+1, . . . , tk])

= (‖M ′‖, σ[t1, . . . , ti−1, t, ti+1, . . . , tk]) = F ′(r) · µ′
k(σ)c′[[ı(p)]],r ·

(

∏

j∈[1,k]\{i}

hµ′(tj)r′j

)

· hµ′(t)ı(p)

and

F (q′) · µk(σ)c[[q]],q′ ·
(

∏

j∈[1,k]\{i}

hµ(tj)qj

)

· hµ(u)q = (‖M‖, σ[t1, . . . , ti−1, u, ti+1, . . . , tk])

= (‖M ′‖, σ[t1, . . . , ti−1, u, ti+1, . . . , tk]) = F ′(r) · µ′
k(σ)c′[[ı(q)]],r ·

(

∏

j∈[1,k]\{i}

hµ′(tj)r′j

)

· hµ′(u)ı(q) .
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We distinguish two cases: (i) F (p′) = 0 and (ii) F (p′) = 1. Let us consider the first case. Clearly,
F (p′) = 0 only if p′ is the (then unique) dead state of M . We conclude that p′ = q′ because
F (q′) = 0. Moreover, µk(σ)c[[p]],p′ = 1 = µk(σ)c[[q]],q′ since M is all-accepting.

Let us continue with the second case. Suppose that F (p′) = 1. Consequently, F ′(r) = 1 = F (q′).
With the help of Observation 3.11 we can simplify the above equations.

µk(σ)c[[p]],p′ ·
(

∏

j∈[1,k]\{i}

(‖M‖, tj)
)

· (‖M‖, t) = µ′
k(σ)c′[[ı(p)]],r ·

(

∏

j∈[1,k]\{i}

(‖M ′‖, tj)
)

· (‖M ′‖, t) (1)

and

µk(σ)c[[q]]q′ ·
(

∏

j∈[1,k]\{i}

(‖M‖, tj)
)

· (‖M‖, u) = µ′
k(σ)c′[[ı(q)]],r ·

(

∏

j∈[1,k]\{i}

(‖M ′‖, tj)
)

· (‖M ′‖, u) (2)

From the above equations we obtain

µk(σ)c[[p]],p′

= µ′
k(σ)c′[[ı(p)]],r (by cancellation in (1) because ‖M‖ = ‖M ′‖)

= µ′
k(σ)c′[[ı(q)]],r (by ı(p) = ı(q))

= µk(σ)c[[q]],q′ (by cancellation in (2) because ‖M‖ = ‖M ′‖)

and thus R is a forward bisimulation.

It remains to prove that (M/R) is isomorphic to M ′. Clearly, (M/R) is deterministic, complete,
and all-accepting. Moreover, (M/R) has |Q′| states and ‖(M/R)‖ = ‖M‖ by Theorem 3.7. Thus
(M/R) is a minimal deterministic and complete aa-wta that recognises ‖M‖. Since the minimal
deterministic and complete wta recognising ‖M‖ is unique up to isomorphism, we obtain that
(M/R) and M ′ are isomorphic.

3.2 A forward bisimulation minimisation algorithm

We now present a minimisation algorithm for wta that draws on the ideas presented in the previous
section. Algorithm 1 searches for the coarsest forward bisimulation R on the input wta M by
producing increasingly refined equivalence relations R0,R1,R2, . . . . The first of these is the coarsest
stable candidate solution (see Definition 3.16). The relation Ri+1 is derived from Ri by removing
pairs of states that prevent Ri from being a forward bisimulation. The algorithm also produces an
auxiliary sequence of relations P0,P1,P2, . . . that are used to find these offending pairs. Termination
occurs when Ri and Pi coincide. At this point, Ri is the coarsest forward bisimulation on M .

Before we discuss the algorithm, its correctness, and its time complexity, we extend our notation.
For the rest of this section, let M = (Q,Σ,A, F, µ) be an arbitrary but fixed wta with n = |Q|
states, and let r be the maximum k such that Σ(k) is non-empty. Finally, we use the following
shorthands in Algorithm 1.

Definition 3.13 Let B be a subset of Q. We write

• cut (B) for the subset (Q2 \ B2) \ (Q \ B)2 of Q × Q, and

15



input: A wta M = (Q,Σ,A, F, µ);

initially: P0 := Q × Q;

R0 := ker(F ) \ split (Q);
i := 0;

while Ri 6= Pi: choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1 := Pi \ cut (Bi);
Ri+1:=

(

Ri \ split (Bi)
)

\ split (Si \ Bi);
i := i + 1;

return: (M/Ri);

Algorithm 1: A forward bisimulation minimisation algorithm for weighted tree automata.

• split (B) for the set of all pairs (p, q) in Q × Q such that

∑

r∈B

µk(σ)c[[p]],r 6=
∑

r∈B

µk(σ)c[[q]],r

for some σ ∈ Σ(k) and c ∈ CQ
(k). 2

Let us illustrate Algorithm 1 on the wta of Example 3.3.

Example 3.14 Let N = (P, ∆, N, G, ν) be the wta of Example 3.3 that recognises the tree series
zigzag. We will show the iterations of the algorithm on this example wta. Let us start with the
initialisation:

P0 = P × P and R0 = {l, L}2 ∪ {r, R}2 ∪ {⊥}2 .

Now, in the first iteration, we select S0 = P and B0 = {l, L} and thus compute

P1 = {l, L}2 ∪ {r, R,⊥}2 and R1 = R0 .

Obviously, P1 is still different from R1, so the algorithm enters into a second iteration. We now let
S1 = {r, R,⊥} and B1 = {⊥}, which yields R2 = P2. The algorithm consequently terminates and
returns the aggregated wta (N/R2), which is displayed in Figure 1. 2

3.2.1 Correctness and termination

As Lemma 3.19 will show, there exists a t < n such that the algorithm terminates when i = t. We
use the notations introduced in the algorithm for the discussion of its correctness and termination.

Lemma 3.15 The relation Ri is a refinement of Pi for all i ∈ [0, t].

Proof The proof is by induction on i. The base case is satisfied by the initialisation of P0 to
Q×Q. For the induction step, we proceed as follows. Clearly, Ri+1 ⊆ Ri and Pi+1 = Pi \ cut (Bi).
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Since Bi ∈ (Q/Ri), we also have the equality Ri∩cut (Bi) = ∅. Finally, by the induction hypothesis,
the inclusion Ri ⊆ Pi holds. It follows that

Ri+1 ⊆ Ri = Ri\cut (Bi) ⊆ Pi\cut (Bi) = Pi+1 .

Lemma 3.15 ensures that Ri is a proper refinement of Pi, for all i ∈ [0, t− 1]. This means that, up
to the termination point t, we can always find blocks Bi ∈ (Q/Ri) and Si ∈ (Q/Pi) such that Bi

is contained in Si, and the size of Bi is at most half of that of Si. For the next statement we an
additional notion. Basically, stability tests Condition (ii) of Definition 3.2 with the block D chosen
from a coarser equivalence relation.

Definition 3.16 Let R and P be two equivalence relations on Q such that R ⊆ P. We say that
R is stable with respect to P if, for every pair (p, q) in R, symbol σ of Σ(k), context c of CQ

(k), and

block D in (Q/P)
∑

r∈D

µk(σ)c[[p]],r =
∑

r∈D

µk(σ)c[[q]],r .

Finally, we say that R is stable if it is stable with respect to itself. 2

Note that a stable equivalence relation R such that F (p) = F (q) for every (p, q) ∈ R is a forward
bisimulation on M . Next we show that Algorithm 1 produces relations Ri and Pi such that Ri is
stable with respect to Pi.

Lemma 3.17 The relation Ri is stable with respect to Pi for all i ∈ [0, t].

Proof By Lemma 3.15, the relation Pi is coarser than Ri. The remaining proof is by induction
on i. The base case follows from the definitions of R0 and P0. Now, let (p, q) be a pair in Ri+1, let
σ be a symbol in Σ(k), let c be a context in CQ

(k), and let D be a block in (Q/Pi+1). We show that

∑

r∈D

µk(σ)c[[p]],r =
∑

r∈D

µk(σ)c[[q]],r . (3)

Depending on D, there are three cases: In the first case, the intersection between D and Si is empty.
This implies that D is also a block of (Q/Pi). Furthermore, the fact that (p, q) is an element of Ri+1

means that (q, q′) is also an element of the coarser relation Ri. Consequently, Equation (3) holds
by induction hypothesis. Alternatively, either D = Bi or D = Si \ Bi. In these cases Equation (3)
trivially holds because otherwise (p, q) ∈ split (D).

Lemma 3.18 Every forward bisimulation R on M is a refinement of Ri for every i ∈ [0, t].

Proof The proof is by induction on i. In the base case we need to show that for every (p, q) ∈ R
we can conclude that (p, q) ∈ R0. Clearly, (p, q) ∈ ker(F ) by Condition (i) in Definition 3.2. Finally,
we need to show that

∑

r∈Q

µk(σ)c[[p]],r =
∑

r∈Q

µk(σ)c[[q]],r
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holds for every symbol σ of Σ(k) and context c in CQ
(k). We compute as follows.

∑

r∈Q

µk(σ)c[[p]],r

=
∑

D∈(Q/R)

(

∑

r∈D

µk(σ)c[[p]],r

)

=
∑

D∈(Q/R)

(

∑

r∈D

µk(σ)c[[q]],r

)

=
∑

r∈Q

µk(σ)c[[q]],r (because (p, q) ∈ R)

To cover the induction step, we show that if (p, q) is in R, then (p, q) is also in Ri+1. This
is done by examining how the minimisation algorithm obtains Ri+1 from Ri. It is required
that (p, q) is in Ri, and this is satisfied by the induction hypothesis. Moreover, it is required
that

∑

r∈D µk(σ)c[[p]],r =
∑

r∈D µk(σ)c[[q]],r for every symbol σ ∈ Σ(k), context c ∈ CQ
(k), and

D ∈ {Bi, Si \ Bi}. By the following computation, also this condition is met.

∑

r∈D

µk(σ)c[[p]],r

=
∑

D′∈(D/R)

(

∑

r∈D′

µk(σ)c[[p]],r

)

(Since R ⊆ Ri by induction hypothesis)

=
∑

D′∈(D/R)

(

∑

r∈D′

µk(σ)c[[q]],r

)

(Because (p, q) is in R, and R is stable)

=
∑

r∈D

µk(σ)c[[q]],r (Since R ⊆ Ri by induction hypothesis.)

Hence the pair (p, q) is in Ri+1, so the proof is complete.

Finally, we should guarantee that Algorithm 1 terminates in less than n iterations.

Lemma 3.19 There exists a t < n such that Rt = Pt.

Proof Clearly, Algorithm 1 only terminates if Rt and Pt coincide for some t > 0. Up until
termination, i.e., for all i < t, we have that

|(Q/Ri)| > |(Q/Pi)| and |(Q/Pi+1)| > |(Q/Pi)|

hold by Lemma 3.15. The size of both (Q/Ri) and (Q/Pi) is bound from above by n. Should the
algorithm reach iteration n− 1 before terminating, we have by necessity that both |(Q/Pn−1)| and
|(Q/Rn−1)| are equal to n, so Rn−1 and Pn−1 coincide. Consequently, there exists an integer t < n
such that Rt and Pt are equal.

Theorem 3.20 Algorithm 1 returns the forward bisimulation minimal wta (M/P) where P is the
coarsest forward bisimulation on M .

18



Proof Lemma 3.19 guarantees that the algorithm terminates with Rt = Pt. According to
Lemma 3.17, Rt is stable with respect to Pt. Consequently, Rt is stable because Rt = Pt. More-
over, F (p) = F (q) for every (p, q) ∈ Rt because Rt ⊆ R0. Hence, Rt meets Conditions (i) and (ii)
of Definition 3.2 and is thus a forward bisimulation. Finally, Rt is coarser than any forward bisim-
ulation on M by Lemma 3.18. By Theorem 3.9, this yields that Rt = P is the coarsest forward
bisimulation on M and that (M/Rt) is minimal with respect to forward bisimulation.

3.2.2 Time complexity

In this section, we analyse the running time of the general minimisation algorithm on input
M = (Q,Σ,A, F, µ). We use n to denote the size of the set Q, r to denote the maximum in-
teger k such that Σ(k) is nonempty, and m to denote the size of the µ;

m =
∑

k∈[0,r]

|{(σ, q1 · · · qk, q) ∈ Σ(k) × Qk × Q | µk(σ)q1···qk,q 6= 0}| .

For the present we assume that the tree representation is not sparse, i.e. that it contains some
Ω

(
∑

k∈[0,r] Σ(k)n
k+1

)

entries. The time complexity when the tree representation is sparse is briefly
discussed in Section 4.3. We also assume that semiring addition can be performed in constant time.

As our computation model we choose the random access machine [35], which supports indirect
addressing, and thus allows the use of pointers. This means that we can represent each block
in a partition of Q with respect to R as a record of two-way pointers to its elements, and thus
determine [q]R in constant time. Pointers can also be used to link a state to its occurrences in the

tree representation µ, so given a set of states B, the part µf
B of µ that contains entries of the form

µk(σ)q1···qk,q, where q ∈ B, can be obtained in time O(|µf
B|).

As usual, µ is represented as an indexed set of matrices (Mσ)σ∈Σ over A, where Mσ is of dimension
k + 1 if σ is in Σ(k), and each dimension is in turn indexed by Q: the value of µk(σ)q1···qk,q is
stored at coordinates q1, . . . , qk, q in Mσ. We assume that µ is not sparse; that is, the size of this
representation of µ is equal to its abstract size m.

During the computation we also maintain the following data structures:

R-blocks A linked list where each entry represents a block in the partition (Q/Ri), i being the
current iteration of the algorithm. Initially, R-blocks contains the entries F and Q \ F

P-blocks A linked list where each entry S represents a block in the partition (Q/Pi). S contains a
pointer to each entry B in R-blocks such that B ⊆ S, labelled with the size of B. Initially,
P-blocks contains the single block Q, which has pointers to F and Q \ F labelled with |F |
and |Q \ F |, respectively.

P-compound A linked list of pointers to those blocks in P-blocks that are composed of more than
one block in (Q/Ri). This list is empty only if Ri = Pi.

To avoid pairwise comparisons between states, we employ a technique that uses hash functions:
for each state q in Q and k ∈ [0, r] a map obsf k

q : Σ(k) × CQ
(k) × P(Q) → A is computed, where

obsf k
q (σ, c, B) is the sum

∑

r∈B

µk(σ)c[[q]],r .
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The states are then hashed using obsf k
q as key for the state q, and afterwards we simply inspect

which states have been sent to the same position in the hash table. Since a random access machine
has unlimited memory, we can always implement a collision free hash h; e.g., by interpreting the
binary representation of (obsf k

q )k∈[0,r] as a memory address. The time required to hash a state q is

then proportional to the size of the representation of (obsf k
q )k∈[0,r], which in turn is proportional

to the size of its support.

Observation 3.21 The overall time complexity of the algorithm is

O
(

Init
f +

∑

i∈[0,t−1]

(

Selecti + Cuti + Split
f
i

)

+ Aggregate
f
)

,

where Init
f , Selecti, Cuti, Split

f
i , and Aggregate

f are the complexity of: (i) the initialisation
phase; (ii) the choice of Si and Bi; (iii) the computation of Pi+1; (iv) the computation of Ri+1,
and (v) the construction of the aggregated automaton (M/Rt); respectively. 2

Lemma 3.22 Init
f is in O(m + n).

Proof The single block of P0 can be initialised in O(n) steps. By Lemma 3.25, we can calculate
split (Q), and thus initialise R0, in time O(|µf

Q|) = O(|µ|) = O(m).

Lemma 3.23 Selecti is in O(1).

Proof We choose as Si the block pointed to by the first entry in P-compound. We then consider
the blocks in (Q/Ri) that are contained in Si. Clearly, at most one of these blocks can be of size
greater than half of the size of Si, so we need not consider more than two blocks before we find a
suitable Bi.

Lemma 3.24 Cuti is in O(|Bi|).

Proof The entry Si is removed from P-compound, and the corresponding entry Si in P-blocks is
split into two entries, Si \Bi and Bi, by iterating over the states pointed to by Bi in time O(|Bi|).
The entry representing Si\Bi points to every block in (Q/Ri) that the entry representing Si pointed
to, except of course Bi. If Si \ Bi is still compound, then it is added to P-compound. The entry
representing Bi only points to Bi.

Lemma 3.25 The derivation of split (B), where B ⊆ Q, is in O(r |µf
B|).

Proof The computation is divided into two parts: for each entry µk(σ)q1···qk,q in µf
B and i in

[1, k], the value of obsf k
qi

(σ, q1 · · · qi−12 qi+1 · · · qk, B) is adjusted according to µk(σ)q1···qk,q. Since
this requires us to iterate the entire sequence of states on the left-hand side of each entry in µf

B,
the time required is in O(r |µf

B|).

The set split (B) can thereafter be derived by hashing each state q in Q using obsf k
q on the domain

⋃

k∈[0,r]

(Σ(k) × CQ
(k) × {B})
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as key. Parallel to the hash process the lists R-blocks, P-blocks, and P-compound are updated
to reflect the changes in R. We note that each entry µk(σ)c[[q]],q′ in µf

B can give rise to at most r
elements in the support of (obsf k

q )q∈Q,k∈N. In other words, the size of the support of (obsf k
q )q∈Q,k∈N,

does not exceed O(r |µf
B|), so the time required to hash the states in Q is determined by the time

it takes to compute their hash keys.

Lemma 3.26 Split
f
i is in O(r |µf

Si
|).

Proof By Lemma 3.25, we can split against Bi in time O(r |µf
Bi
|), and against Si \ Bi in time

O(r |µf
Si\Bi

|), so the overall time complexity of Split
f
i becomes O(r |µf

Si
|).

Lemma 3.27 Aggregate
f is in O(m + n).

Proof The complexity of deriving the aggregated wta (M/Rt) = (Q′, Σ,A, F ′, µ′) is a follows:
The components Σ and A are identical to those in M , an can be determined in constant time. The
components Q′ and F ′ are both given by the entries in R-blocks; to determine if a block in R-blocks
is final, just follow the pointer to one of its constituent states and check if that state is final. This
list can be read in time O(n). To obtain µ′ it suffices to iterate over µ, as each state is linked to
its equivalence class. This requires another O(m) computation steps.

Theorem 3.28 The general algorithm has time complexity O(rmn).

Proof By Observation 3.21, in combination with Lemmata 3.22 – 3.27, the total time consumed
can be written

O
(

(m + n) +
∑

i∈[0,t−1]

(

1 + |Bi| + r |µf
Si
|
)

+ (m + n)
)

,

In the worst case, |Si| equals n − i, and the expression simplifies to O(rmn).

When M is a deterministic wta, the size m of the tree representation is bounded from above by
|Σ|nr, as opposed to |Σ|nr+1 in the nondeterministic case. We thus have Corollary 3.29.

Corollary 3.29 The algorithm is in O
(

r |Σ|nr+1
)

when restricted to deterministic wta.

3.2.3 Additively cancellative semirings

In this section, we show a simplification of Algorithm 1 for additively cancellative semirings. In
essence, the second split in the computation of Ri+1 can be omitted. Thus for the remainder of
this section, let A be an additively cancellative semiring.

Lemma 3.30 Without effect on the overall algorithm we can replace the computation of Ri+1 in
Algorithm 1 simply by Ri+1 = Ri \ split (Bi).

Proof We strengthen this claim by proving, through induction on i, that

Ri \ split (Bi) =
(

Ri \ split (Bi)
)

\ split (Si \ Bi)

holds for all i. Clearly, an element from the right-hand side is also in the left-hand side. It remains
to show that every (p, q) in the left-hand side is also in the right-hand side. Suppose that (p, q) ∈ Ri
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and (p, q) /∈ split (Bi). Let σ be a symbol in Σ(k), and c be a context in CQ
(k). This immediately

yields that
∑

r∈Bi
µk(σ)c[[p]],r =

∑

r∈Bi
µk(σ)c[[q]],r. By Lemma 3.17 and the induction hypothesis,

Ri is stable with respect to Pi. Thus we conclude that
∑

r∈Si
µk(σ)c[[p]],r =

∑

r∈Si
µk(σ)c[[q]],r. We

compute as follows.
(

∑

r∈Si\Bi

µk(σ)c[[p]],r

)

+
(

∑

r∈Bi

µk(σ)c[[p]],r

)

=
∑

r∈Si

µk(σ)c[[p]],r

=
∑

r∈Si

µk(σ)c[[q]],r =
(

∑

r∈Si\Bi

µk(σ)c[[q]],r

)

+
(

∑

r∈Bi

µk(σ)c[[q]],r

)

Since we additionally have that
∑

r∈Bi
µk(σ)c[[p]],r is equal to

∑

r∈Bi
µk(σ)c[[q]],r, we can apply the

cancellation law to the equation
(

∑

r∈Si\Bi

µk(σ)c[[p]],r

)

+
(

∑

r∈Bi

µk(σ)c[[p]],r

)

=
(

∑

r∈Si\Bi

µk(σ)c[[q]],r

)

+
(

∑

r∈Bi

µk(σ)c[[q]],r

)

and obtain that
∑

r∈Si\Bi
µk(σ)c[[p]],r is equal to

∑

r∈Si\Bi
µk(σ)c[[q]],r. Consequently, (p, q) is not in

split (Si \ Bi) and the statement is proved.

The following lemma shows an important observation that is needed to prove the improvement in
the time complexity for the revised algorithm for wta on additively cancellative semirings.

Lemma 3.31 For each q ∈ Q we have that |{i ∈ [0, t − 1] | q ∈ Bi}| ≤ log n.

Proof Let i and j be such that i < j and q ∈ Bi ∩ Bj . Since Rj is a refinement of Ri, we have
that Bj is a subset of Bi. We know then that |Bj | is less or equal to |Bi| /2, or else Bj would violate
the selection criteria for the B-blocks. If we order the B-blocks in which q occurs in descending
order (with respect to their size), we have that each block in the list is at most half of the size of its
predecessor. The first block in which q occurs cannot be larger than n, and the last block cannot
be smaller than a singleton. Hence, the number of blocks that include q is at most log n.

We now consider the time complexity of the algorithm optimised for cancellative semirings on input
M = (Q,Σ,A, F, µ). The notations and assumptions are identical to those of the previous section.

Theorem 3.32 The algorithm for additively cancellative semirings is in O(rm log n).

Proof By Lemma 3.26, the computation of split (Bi) is in O(r |µf
Bi
|), so the time consumed by

Iteration 0 to t − 1 is in

O



r
∑

i∈[0,t−1]

|µf
Bi
|



 .

According to Lemma 3.31, no state occurs in more than log n distinct B-blocks, and an entry in
µ can only contribute to |µf

Bi
| if its last state is in Bi. Consequently, no entry µk(σ)q1···qk,q can

contribute by more than log n to the total sum, and since there are
∑

k∈[0,r] |Σ(k)|n
k+1 entries, the

sum can be rewritten as O(r
∑

k∈[0,r] |Σ(k)|n
k+1 log n), which simplifies to O(rm log n).

Corollary 3.33 The algorithm optimised for cancellative semirings is in O(r |Σ|nr log n) when
restricted to deterministic wta.
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4 Backward bisimulation

4.1 Foundation

In this section we investigate backward bisimulation [10]. We introduce the following supporting
notation. Let Π be a partition of a set Q. For every integer k ∈ N we write Π(k) for the set
{D1 × · · · × Dk | D1, . . . , Dk ∈ Π}. Finally, we write Π(≤k) for the set Π(0) ∪ · · · ∪ Π(k).

Definition 4.1 (cf. [10, Definition 4.1]) Let M = (Q,Σ,A, F, µ) be a wta, and let R be an
equivalence relation on Q. We say that R is a backward bisimulation on M if for every (p, q) ∈ R
and every symbol σ in Σ(k) and word L ∈ (Q/R)(k)

∑

w∈L

µk(σ)w,p =
∑

w∈L

µk(σ)w,q . 2

Example 4.2 Let us present another wta that recognises the tree series zigzag. As in Example 3.3
let ∆ = ∆(0) ∪ ∆(2) with ∆(0) = {α} and ∆(2) = {σ} and N = (N, +, ·, 0, 1) be the semiring of
natural numbers. We present the wta N = (P, ∆, N, G, ν) with P = {l, r, L, R,⊥} and G(l) = 1
and G(p) = 0 for every p ∈ {r, L, R,⊥} and

1 = ν0(α)ε,l = ν0(α)ε,r = ν0(α)ε,L = ν0(α)ε,R = ν0(α)ε,⊥

1 = ν2(σ)⊥L,R = ν2(σ)⊥L,r = ν2(σ)⊥l,r

1 = ν2(σ)R⊥,L = ν2(σ)R⊥,l = ν2(σ)r⊥,l

1 = ν2(σ)⊥⊥,⊥ .

All remaining entries in ν are 0. The wta N is displayed in Figure 2. It can be shown that the
wta N recognises the tree series zigzag (this tree series is also recognised by the wta of Examples
3.3 and 3.5). If we apply Algorithm 1 to N , we will note that N only admits the trivial forward
bisimulation and is thus minimal with respect to forward bisimulation minimisation.

Let us try to find a backward bisimulation on N . We propose P = {l}2 ∪ {r}2 ∪ {L, R,⊥}2.
We will now demonstrate that P is a backward bisimulation on M . We immediately note that
ν0(α)ε,L = ν0(α)ε,R = ν0(α)ε,⊥. Finally, we also observe that for every p1, p2 ∈ P such that
(p1,⊥) /∈ P and (p2,⊥) /∈ P we have ν2(σ)p1p2,p = 0 for every p ∈ {L, R,⊥} and

∑

p1p2∈[⊥][⊥]

ν2(σ)p1p2,L = ν2(σ)R⊥,L = 1

∑

p1p2∈[⊥][⊥]

ν2(σ)p1p2,R = ν2(σ)⊥L,R = 1

∑

p1p2∈[⊥][⊥]

ν2(σ)p1p2,⊥ = ν2(σ)⊥⊥,⊥ = 1 .

Thus P is a backward bisimulation on N . 2

Since we are again only interested in reducing the size of the wta, we define how to collapse a wta M
with respect to a backward bisimulation R on M . For the rest of this section, let M = (Q,Σ,A, F, µ)
be a wta, and let R be a backward bisimulation on M .

23



L r

⊥

R l

Figure 2: The wta of Example 4.2; every binary transition is labelled with σ/1 and every nullary
transition with α/1 and final weights are 1 for doubly-circled states and 0 otherwise.

Definition 4.3 (cf. [10, Definition 3.3]) The (backward) aggregated wta (M/R) [10] (with re-
spect to M and R) is the wta (Q′, Σ,A, F ′, µ′) given by

• Q′ = (Q/R);

• F ′(D) =
∑

q∈D F (q) for every block D of (Q/R); and

• for every symbol σ in Σ(k), word D1 · · ·Dk of blocks in (Q/R), and state q ∈ Q

µ′
k(σ)D1···Dk,[q] =

∑

w∈D1···Dk

µk(σ)w,q .

Clearly, the wta (M/R) is well-defined because R is a backward bisimulation on M . 2

The above definition captures the size reduction. It is clear that the aggregated wta (M/R) will
have as many states as there are equivalence classes with respect to R, and also that (M/R) cannot
have more states than M . In fact, our aim is to collapse as many states as possible into a single
state. Let us show an example of a backward aggregated wta.

Example 4.4 Recall the wta N and the backward bisimulation P from Example 4.2. According
to Definition 4.3 we obtain the aggregated wta (N/P) = (P ′, ∆, N, G′, ν ′) with P ′ = {[l], [r], [⊥]}
and G′([l]) = 1 and G′([r]) = G([⊥]) = 0 and

1 = ν ′
0(α)ε,[l] = ν ′

0(α)ε,[r] = ν ′
0(α)ε,[⊥]

1 = ν ′
2(σ)[⊥][⊥],[r] = ν ′

2(σ)[⊥][l],[r]

1 = ν ′
2(σ)[⊥][⊥],[l] = ν ′

2(σ)[r][⊥],[l]

1 = ν ′
2(σ)[⊥][⊥],[⊥] .
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All remaining entries in ν ′ are 0. As we will see in Theorem 4.7 also (N/P) recognises zigzag.
In fact, (N/P) is isomorphic to the forward aggregated wta in Example 3.5. Thus, the graphical
representation can be found in Figure 1. 2

Next we prepare Theorem 4.7, which will show that wta M and (M/R) recognise the same series.
Our helping lemma will relate a state q of M to the state [q] of (M/R). The linking property is
that those two states (in their respective wta) recognise the same tree series.

Lemma 4.5 (cf. [10, Theorem 4.2] and [2, Lemma 5.2]) Let (M/R) = (Q′, Σ,A, F ′, µ′) be
as defined in Definition 4.3. Then hµ′(t)[q] = hµ(t)q for every state q ∈ Q and tree t ∈ TΣ.

Proof We prove the statement inductively. Suppose that t = σ[t1, . . . , tk] for some σ ∈ Σ(k) and
t1, . . . , tk ∈ TΣ.

hµ′(σ[t1, . . . , tk])[q]

=
∑

D1,...,Dk∈(Q/R)

µ′
k(σ)D1···Dk,[q] · hµ′(t1)D1 · . . . · hµ′(tk)Dk

=
∑

D1,...,Dk∈(Q/R)

(

∑

q1···qk∈D1···Dk

µk(σ)q1···qk,q

)

· hµ′(t1)D1 · . . . · hµ′(tk)Dk

= (by induction hypothesis applied k times)
∑

D1,...,Dk∈(Q/R),
q1···qk∈D1···Dk

µk(σ)q1···qk,q · hµ(t1)q1 · . . . · hµ(tk)qk

= hµ(σ[t1, . . . , tk])q

The previous lemma establishes a nice property of bisimilar states. Let us make the observation
that bisimilar states recognise the same tree series explicit here.

Corollary 4.6 (of Lemma 4.5) It holds that hµ(t)p = hµ(t)q for every pair (p, q) ∈ R of bisimilar
states and every tree t ∈ TΣ. 2

With Lemma 4.5 we can easily prove that the aggregated wta (M/R) recognises the same tree series
as the wta M . In particular, this shows that the approach via backward bisimulation is sound.

Theorem 4.7 (cf. [10, Theorem 4.2] and [2, Lemma 5.3]) ‖(M/R)‖ = ‖M‖.

Proof Let (M/R) = (Q′, Σ,A, F ′, µ′). For every tree t ∈ TΣ

(‖(M/R)‖, t) =
∑

D∈(Q/R)

F ′(D) · hµ′(t)D =
∑

D∈(Q/R)

(

∑

q∈D

F (q)
)

· hµ′(t)D

=
∑

D∈(Q/R),q∈D

F (q) · hµ(t)q (by Lemma 4.5)

= (‖M‖, t) .
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Clearly, among all backward bisimulations on M the coarsest one yields the smallest aggregated
wta. Further, this wta admits only the trivial backward bisimulation. We will show that there exists
a unique coarsest backward bisimulation P on M and then show that (M/P) is really minimal with
respect to backward bisimulation.

Lemma 4.8 (cf. [10, Theorem 3.5]) Let R and P be backward bisimulations on M . Then there
exists a backward bisimulation R′ on M such that R∪ P ⊆ R′.

Proof Let R′ be the smallest equivalence containing R∪P. We now show that R′ is a backward
bisimulation on M . Let (p, q) ∈ R′. Thus there exist n ∈ N and

(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ R ∪ P

such that p1 = p and pn = q. Clearly, every block D ∈ (Q/R′) is a union of blocks of (Q/R) as
well as a union of blocks of (Q/P). Thus the condition of Definition 4.1 is trivially met for all
(pi, pi+1) ∈ R ∪ P with i ∈ [1, n − 1]. Now we verify the condition for p and q. Thus, let σ be a
symbol of Σ(k), and let L ∈ (Q/R′)(k).

∑

w∈L

µk(σ)w,p1 =
∑

w∈L

µk(σ)w,p2 = . . . =
∑

w∈L

µk(σ)w,pn−1 =
∑

w∈L

µk(σ)w,pn

Theorem 4.9 (cf. [10, Theorem 3.2]) There exists a coarsest backward bisimulation P on M ,
and the identity is the only backward bisimulation on (M/P).

Proof The existence of the coarsest backward bisimulation is a direct consequence of Lemma 4.8.
We prove the remaining part by contradiction. Assume that (M/P) = (Q′, Σ,A, F ′, µ′) admits a
non-trivial backward bisimulation R′. Whenever we write [p] with p ∈ Q, we mean [p]P . We
construct the relation P ′ = {(p, q) | ([p], [q]) ∈ R′}. Trivially, P ′ is an equivalence relation
on Q. Further, we claim that P ′ is a backward bisimulation on M . To validate the claim, let
(p, q) ∈ P ′. Moreover, let σ ∈ Σ(k) be a symbol and D1 · · ·Dk ∈ (Q/P ′)k be a sequence of blocks.
Clearly, for every i ∈ [1, k] the block Di is a union Di,1 ∪ · · · ∪ Di,ni

of pairwise different blocks
Di,1, . . . , Di,ni

∈ (Q/P). Moreover, D′
i = {Di,1, . . . , Di,ni

} is a block in (Q′/R′).
∑

w∈D1···Dk

µk(σ)w,p =
∑

D′′

1 ···D
′′

k
∈D′

1···D
′

k

(

∑

w∈D′′

1 ···D
′′

k

µk(σ)w,p

)

=
∑

D′′

1 ···D
′′

k
∈D′

1···D
′

k

µ′
k(σ)D′′

1 ···D
′′

k
,[p] (by Definition 4.3)

=
∑

D′′

1 ···D
′′

k
∈D′

1···D
′

k

µ′
k(σ)D′′

1 ···D
′′

k
,[q] (by ([p], [q]) ∈ R′)

=
∑

D′′

1 ···D
′′

k
∈D′

1···D
′

k

(

∑

w∈D′′

1 ···D
′′

k

µk(σ)w,q

)

(by Definition 4.3)

=
∑

w∈D1···Dk

µk(σ)w,q

Thus P ′ is a backward bisimulation on M . Moreover, P ′ is coarser than P, and since R′ is not the
identity it follows that P ⊂ P ′. This contradicts the assumption that P is the coarsest backward
bisimulation on M . Consequently, (M/P) only admits the identity as backward bisimulation.
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4.2 A backward bisimulation minimisation algorithm

We now show how the minimisation algorithm of Section 3.2 can be modified so as to minimise
with respect to backward bisimulation. For the rest of this section, let M = (Q,Σ,A, F, µ) be an
arbitrary but fixed wta with n = |Q| states.

Intuitively,
∑

w∈D1···Dk
µk(σ)w,q captures the extent to which q is reachable from states in D1 · · ·Dk,

on input σ, and is thus a local observation of the properties of q (cf. Definition 4.1). To decide
whether states p and q are bisimilar, we compare

∑

w∈L µk(σ)w,p and
∑

w∈L µk(σ)w,q on increasing
languages L. If we find a pair (σ, L) on which the two sums disagree, then (p, q) can safely be
discarded from our maintained set of bisimilar states.

In the new algorithm, we need the following additional notations.

Definition 4.10 Let B, B′ be subsets of Q and let L ⊆ P(Q∗) be a set of languages.

• We write L(B) to denote {L ∩ Q∗BQ∗ | L ∈ L}.

• We write L(B,¬B′) when we mean {L ∩ (Q \ B′)∗ | L ∈ L(B)}.

• We write splitb(L) for the set of all (p, q) in Q × Q for which there exist σ ∈ Σ(k) and a

language L ∈ L ∩ P(Qk) such that
∑

w∈L µk(σ)w,p 6=
∑

w∈L µk(σ)w,q.

We can now construct a minimisation algorithm based on backward bisimulation by replacing the
initialisation of R0 in Algorithm 1 with

R0 = P0 \ splitb((Q/P0)≤r) ,

and the computation of Ri+1 with

Ri+1 =
(

Ri \ splitb((Q/Pi+1)(≤r) (Bi))
)

\ splitb((Q/Pi+1)(≤r) (Si \ Bi,¬Bi)) .

The modified algorithm is shown in Algorithm 2.

Example 4.11 Consider the execution of the backward bisimulation minimisation algorithm on
the wta N = (P, ∆, N, G, ν) of Example 4.2. Clearly, P0 is P × P . In the computation of
P0\split

b(L0), the state space can be divided into {L, R,⊥} and {l, r}, as
∑

w∈PP νk(σ)w,p is 1 when
p is in the former set, but 2, when in the latter. No additional information can be derived by inspect-
ing ν0(α)ε,p because this value equals 1 for every p ∈ {l, r, L, R,⊥}, so R0 = {l, r}2 ∪ {L, R,⊥}2.

In iteration 1, S0 is by necessity P , and B0 is {l, r}, so P1 = R0. The tree representation entries
for the nullary symbol α will have no further effect on R0. On the other hand, we have that
∑

w∈[⊥][l] ν2(σ)w,p is nonzero only when p = l, which splits the block {l, r}. Seeing that ν is such

that the block {L, R,⊥} is only affected by itself, we know that R1 = {l}2 ∪ {r}2 ∪ {L, R,⊥}2, is
the sought bisimulation. This means that termination happens in iteration 3, when P3 has been
refined to the level of R1. 2

4.2.1 Correctness and termination

We now verify that the algorithm is correct. Note that Lemmata 3.15 and 3.19 are still valid,
since they do not depend on the definition of the split function. Thus, Algorithm 2 terminates in
t < n iterations and Ri ⊆ Pi for every i ∈ [0, t]. We provide Lemmata 4.13 and 4.14 as respective
replacements for Lemmata 3.17 and 3.18.
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input: A wta M = (Q,Σ,A, F, µ);

initially: P0 := Q × Q;

L0 := (Q/P0)(≤r);

R0 := P0 \ splitb(L0);
i := 0;

while Ri 6= Pi: choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1 := Pi \ cut (Bi);
Li+1 := (Q/Pi+1)(≤r);

Ri+1:=
(

Ri \ splitb(Li+1(Bi))
)

\ splitb(Li+1(Si \ Bi,¬Bi));
i := i + 1;

return: (M/Ri);

Algorithm 2: A backward bisimulation minimisation algorithm for weighted tree automata.

Definition 4.12 Let R and P be two equivalence relations on Q, where P is coarser than R. We
say that R is stable with respect to P if for every pair (p, q) in R the sums

∑

w∈L µk(σ)w,p and
∑

w∈L µk(σ)w,q are equal for every σ ∈ Σ(k) and L ∈ (Q/P)(k). 2

We note that R is a backward bisimulation on M if and only if it is stable with respect to itself.

Lemma 4.13 The relation Ri is stable with respect to Pi for all i ∈ [0, t].

Proof By Lemma 3.15, the relation Pi is coarser than Ri. The remaining proof is by induction
on i. The base case follows from the definitions of R0 and P0. Now, let (p, q) be a pair in Ri+1,
let σ be a symbol in Σ(k), and let L be a language in (Q/Pi+1)(k) = Li+1 ∩ P(Qk). We show that

∑

w∈L

µk(σ)w,p =
∑

w∈L

µk(σ)w,q . (4)

Depending on L, there are three cases: First let L be in Li∩P(Qk) = (Q/Pi)(k). The fact that (p, q)
is an element of Ri+1 means that (p, q) is also an element of the coarser relation Ri. Supporting
ourselves on the induction hypothesis, we have that (4) holds.

Second, let L be in the set Li+1(Bi)∩P(Qk), and finally let L be in Li+1(Si \Bi,¬Bi)∩P(Qk). In
both cases, Equation (4) holds by the computation of Ri+1 in Algorithm 2 because L ∈ Li+1(Bi)
or L ∈ Li+1(Si \ Bi,¬Bi).

Lemma 4.14 Every backward bisimulation R on M is a refinement of Ri for every i ∈ [0, t].

Proof The proof is by induction on i. In the induction base, let (p, q) ∈ R. It remains to show
that

∑

w∈Qk µk(σ)w,p =
∑

w∈Qk µk(σ)w,q for every symbol σ ∈ Σ(k). Clearly, Qk =
⋃

(Q/R)(k). We
compute as follows.

∑

w∈Qk

µk(σ)w,p =
∑

L∈(Q/R)(k)

(

∑

w∈L

µk(σ)w,p

)

=
∑

L∈(Q/R)(k)

(

∑

w∈L

µk(σ)w,q

)

=
∑

w∈Qk

µk(σ)w,q
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To cover the induction step, we show that if (p, q) is in R, then (p, q) is also in Ri+1. This
is done by examining how the minimisation algorithm obtains Ri+1 from Ri. It is required
that (p, q) is in Ri, and this is satisfied by the induction hypothesis. Moreover, it must hold
that

∑

w∈L µk(σ)w,p =
∑

w∈L µk(σ)w,q for every symbol σ ∈ Σ(k), and language L in the sets

Li+1(Bi) ∩ P(Qk) and Li+1(Si \ Bi,¬Bi) ∩ P(Qk). Since R ⊆ Ri by induction hypothesis
and Ri ⊆ Pi+1 we immediately observe that L = L1 ∪ · · · ∪ Ln for some pairwise disjoint
L1, . . . , Ln ∈ (Q/R)(k). By the following computation, also this condition is met.

∑

w∈L

µk(σ)w,p =
∑

i∈[1,n]

(

∑

w∈Li

µk(σ)w,p

)

=
∑

i∈[1,n]

(

∑

w∈Li

µk(σ)w,q

)

=
∑

w∈L

µk(σ)w,q

where the second equality holds because (p, q) ∈ R.

Theorem 4.15 Algorithm 2 returns the backward bisimulation minimal wta (M/P) where P is
the coarsest backward bisimulation on M .

Proof Lemma 3.19 guarantees that the algorithm terminates with Rt = Pt. According to
Lemma 4.13, Rt is stable with respect to Pt. Consequently, Rt is a backward bisimulation be-
cause Rt = Pt. Finally, Rt is coarser than every backward bisimulation on M by Lemma 4.14. By
Theorem 4.9, this yields that Rt = P is the coarsest backward bisimulation on M and that (M/Rt)
is minimal with respect to backward bisimulation.

4.2.2 Time complexity

We now compute the time complexity of the backward bisimulation algorithm, using the same
assumptions and notations as in Section 3.2.2. In addition, we denote by µb

L, where L ⊆ P(Q)∗,
the part of the tree representation µ that contains entries of the form µk(σ)q1···qk,q, where q1 · · · qk

is in B1 · · ·Bk for some B1 · · ·Bk ∈ L.

We still want to substitute hashing for pairwise comparisons, so we define, for each q ∈ Q and
k ∈ [0, r], the mapping obsbk

q : Σ(k) × P(Q)∗ that is given by

obsbk
q (σ, D1 · · ·Dk) =

∑

q1···qk∈D1···Dk

µk(σ)q1···qk,q .

Observation 4.16 The overall time complexity of the algorithm is

O
(

Init
b +

∑

i∈[0,t−1]

(

Selecti + Cuti + Split
b
i

)

+ Aggregate
b
)

,

where Init
b, Selecti, Cuti, Split

b
i , and Aggregate

b are the complexity of: (i) the initialisation
phase; (ii) the choice of Si and Bi; (iii) the computation of Pi \ cut (Bi); (iv) the computation of
Ri+1; and (v) the computation of (M/Rt); respectively. 2

Lemma 4.17 Init
b is in O(rm + n).

Proof The relation P0 can clearly be initialised in O(n), and by Lemma 4.18 the initialisation of
R0 to P0 \ splitb(L0) is in O

(

r |µb
L0
|
)

= O(rm).
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Lemma 4.18 Let R and P be equivalence relations on Q. The computation of R\splitb(L), where
L ⊆ (Q/P)∗, is in O

(

r |µb
L|

)

.

Proof Let L(k) = {w ∈ L | w is of length k}. We begin the computation by adjusting the value

of obsbk
q (σ, [q1]Pi+1 · · · [qk]Pi+1) for each µk(σ)q1···qk,q in µb

L, at the cost of O
(

r
∣

∣µb
L

∣

∣

)

computation
steps. The elements of Ri that are to be retained in Ri+1 can thereafter be determined by hashing
each state q in Q using (obsbk

q )k∈N on the domain ∪k∈[0,r](Σ(k) × L(k)) as key, and then keeping
those pairs of states that end up at the same memory address.

We now make the observation that if the pair σ ∈ Σ(k) and D1 · · ·Dk ∈ L(k) is in the support

of obsbk
q for some q ∈ Q, then there is an entry µk(σ)q1···qk

in µ such that q1 · · · qk ∈ D1 · · ·Dk.

In other words, size of the support of (obsbk
q )q∈Q,k∈N on the domain ∪k∈[0,r](Σ(k) × L(k)) does not

exceed the size of µb
L. We conclude that the total time required to hash the states is determined

by the time it takes to calculate their hash key.

Lemma 4.19 Split
b
i is in O

(

r |µb
Li(Si)

|
)

.

Proof By Lemma 4.18, we can split against Bi in time O(r |µb
Li+1(Bi)

|), and against Si \ Bi in
O(r |µb

Li+1(Si\Bi,¬Bi)
|). Since |µb

Li(Si)
| = |µb

Li+1(Si\Bi,¬Bi)
| + |µb

Li+1(Bi)
|, the overall time complexity

of Split
b
i becomes O

(

r |µb
Li(Si)

|
)

.

Lemma 4.20 Aggregate
b is in O(m + n).

We omit the proofs of Lemma 4.20 and Theorem 4.21, as they are quite similar those of Lemma 3.27
and Theorem 3.28, respectively.

Theorem 4.21 The backward bisimulation algorithm is in O(rmn).

4.2.3 Additively cancellative semirings

In this section we again consider an optimisation for additively cancellative semirings. Thus, for
the remainder of this section, let A be an additively cancellative semiring.

Lemma 4.22 Without effect on the overall algorithm we can compute Ri+1 as Ri\split
b(Li+1(Bi)).

Proof We prove, through induction on i, that

Ri \ splitb(Li+1(Bi)) = (Ri \ splitb(Li+1(Bi))) \ splitb(Li+1(Si \ Bi,¬Bi)) .

Clearly, an element from the right-hand side is also in the left-hand side. It remains to show that
every (p, q) in the left-hand side is also in the right-hand side. Suppose that (p, q) is in Ri but
not in splitb(Li+1(Bi)). This immediately yields that

∑

w∈L µk(σ)w,p =
∑

w∈L µk(σ)w,q for every
σ ∈ Σ(k) and language L in Li+1(Bi) ∩ P(Qk).

By Lemma 4.13 and the induction hypothesis, Ri is stable with respect to Pi. From this, we
conclude that

∑

w∈L µk(σ)w,p =
∑

w∈L µk(σ)w,q, for every σ ∈ Σ(k) and L in Li ∩ P(Qk).

Let σ be a symbol in Σ(k) and L = D1 × · · · × Dk be a language in Li+1(Si \ Bi,¬Bi) for some
D1, . . . , Dk ∈ (Q/Pi+1). Clearly, none of the blocks D1, . . . , Dk equals Bi. Thus for each j ∈ [1, k]
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we have that either Dj = Si \ Bi or Dj ∈ (Q/Pi). Let J = {j ∈ [1, k] | Dj = Si \ Bi} be the set of
those indices where the block Si \ Bi appears.

Let L′ = D′
1 × · · · × D′

k, and for every j ∈ J let L′′
j = D′′

j,1 × · · · × D′′
j,k where

D′
n =

{

Si if Dn = Si \ Bi

Dn otherwise
and D′′

j,n =

{

Bi if j = n

Dn otherwise

for every i ∈ [1, k]. By definition, L′ is a language of Li(Si) ∩ P(Qk) and L′′
j is a language of

Li+1(Bi) ∩ P(Qk) for every j ∈ J . Moreover, we observe that {L} ∪ {L′′
j | j ∈ J} is a partition

of L′. Thus, in particular, L′ = L ∪
⋃

j∈J L′′
j .

(

∑

w∈L

µk(σ)w,p

)

+
∑

j∈J

(

∑

w∈L′′

j

µk(σ)w,p

)

=
∑

w∈L′

µk(σ)w,p

=
∑

w∈L′

µk(σ)w,q =
(

∑

w∈L

µk(σ)w,q

)

+
∑

j∈J

(

∑

w∈L′′

j

µk(σ)w,q

)

(because L′ ∈ Li ∩ P(Qk))

Since we additionally have that
∑

w∈L′′

j
µk(σ)w,p is equal to

∑

w∈L′′

j
µk(σ)w,q for every j ∈ J because

L′′
j ∈ Li+1(Bi)∩P(Qk), we can apply the cancellation law to obtain that

∑

w∈L µk(σ)w,p is equal to
∑

w∈L µk(σ)w,q. Consequently, splitb(Li+1(Si \ Bi,¬Bi)) does not contain (p, q), so the statement
is proved.

Time complexity We now consider the time complexity for the optimised backward algorithm.

Theorem 4.23 The backward minimisation algorithm is in O
(

r2m log n
)

.

Proof By Lemmata 4.17 and 4.18, time complexity of the algorithm can be written as

O
(

m +
∑

i∈[0,t−1]

1 + |Bi| + r |µb
Li+1(Bi)

|
)

.

Omitting the smaller terms and reordering, we obtain r
∑

i∈[0,t−1] |µ
b
Li+1(Bi)

|.

By Lemma 3.31, no state occurs in more than log n distinct B-blocks. An entry µk(σ)q1···qk,q in µ

will only be contained in µb
Li+1(Bi)

if qj ∈ Bi for some j ∈ [1, k], so no entry will contribute by more

r log n to the sum. The expression hence simplifies to O
(

r2 m log n
)

.

4.3 Sparse tree representations

When the tree representation µ is very sparse, it is more efficiently represented by a list of tuples
over Σ×Q∗×Q×A than by a matrix. Although the size of this representation of µ is m′ = (r+3)m,
it is still preferable to the matrix representation, which can be exponentially large in size.

In case of forward bisimulation, there is however an upside to the list representation: since we must
now read the entire sequence of states q1, . . . , qk, q every time we process an entry µk(σ)q1···qk,q, it
matters little that we also have to update one counter per state. This means that with the list
representation the time complexity of the forward algorithm remains in O(m′n) = O(rmn), and in
O(m′ log n) = O(rm log n) if the underlying semiring is additively cancellative.
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Figure 3: wsa interpretation of a fta and several minimisations of it

Also in case of backward bisimulation we see this effect. Reading the state sequence of an entry
adds another O(r) computation steps, but these do not dominate the amount of work that we do at
an entry, so the backward algorithm is in O(m′n) = O(rmn), and in O(rm′ log n) = O

(

r2m log n
)

if the underlying semiring is cancellative.

5 Iterative Application

In the following example we demonstrate the different nature of the forward and backward algo-
rithms by considering how different sequences of repeated applications converge to different back-
ward and forward bisimulation minimal wta. To motivate this example we consider the application
of dictionary compression. We wish to construct an automaton that recognises the strings “ABLE”,
“CABLE”, and “CAB” in as little space (counting rules and states) as possible.

Example 5.1 Consider the wta M = (Q,Σ, B, F, µ) with

• Q = [1, 12];

• Σ = Σ(1) ∪ Σ(0) with Σ(1) = {E, L, B, A} and Σ(0) = {A, C};

• B = ({0, 1},∨,∧, 0, 1) with the usual operations of “or” ∨ and “and” ∧;

• F (q) = 1 for every q ∈ [10, 12] and F (q) = 0 for every q ∈ [1, 9];
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• the non-zero tree representation entries

1 = µ0(A)ε,1 = µ1(B)1,2 = µ1(L)2,3 = µ1(E)3,10

1 = µ0(C)ε,4 = µ1(A)4,5 = µ1(B)5,6 = µ1(L)6,7 = µ1(E)7,11

1 = µ0(C)ε,8 = µ1(A)8,9 = µ1(B)9,12 . 2

Let us discuss the introduced automaton im more detail (note that we will no longer distinguish
between the unary A and the nullary A). The automaton recognises monadic trees whose labels,
strung together, form the desired strings. As noted in Section 1.2, wta generalise weighted string
automata, of which M is an example. By introducing a start state 0, from which all nullary
transitions lead away, we can represent the wsa form of M in a canonical graphical representation
that is easy to understand, as in Figure 3(a). The initial automaton has 12 states and 12 arcs
(we ignore the artificially inserted start state). If we apply Algorithm 1 common suffix paths
and states are merged (in this case, the “-BLE” in “ABLE” and “CABLE”), resulting in the
automaton depicted in Figure 3(b), which has 7 states and 9 arcs. If we instead apply the backward
minimisation described in Section 4.2, common prefix paths and states are merged (i.e. “CAB” and
“CABLE”), resulting in the automaton depicted in Figure 3(c), which has 9 states and 9 arcs. We
can then apply alternating algorithms on the resultant automata, as depicted in Figures 3(d) and
3(e) until no further reduction is possible. Since the order of minimisation (i.e. forward-backward-...
vs. backward-forward-...) causes different state mergings which cannot later be undone, there is no
guarantee that a particular ordering will result in the smallest obtainable automaton.

6 Implementation

In this section we present some experimental results that we obtained by applying an implementa-
tion of Algorithms 1 and 2 to the problem of language modelling in the natural language processing
domain [19].

A language model is a formalism for determining whether a given sentence is in a particular lan-
guage. Language models are particularly useful in many applications of natural language and
speech processing such as translation, transliteration, speech recognition, character recognition,
etc., where transformation system output must be verified to be an appropriate sentence in the
domain language. Language models are typically formed by collecting subsequences of sentences
over a large corpus of text and assigning probabilities to the subsequences based on their occurrence
counts in the data [20, 26]. To obtain the probability of a sentence one multiplies the probability of
subsequences together. It is thus useful to have a data structure for efficiently looking up many sub-
sequences. As effective language models typically have many millions of unique subsequences, but
there is considerable similarity between the subsequences, a compressed dictionary of subsequences
seems to be a natural choice for such a data structure. A minimisation algorithm is particularly
suited for building a compressed dictionary from uncompressed sequence input.

However, while classical language models use as their subsequence structure a substring of some
chosen window of words (generally referred to as an n-gram), recent research in natural language
processing has focused on using tree-based models to capture syntactic dependencies in applica-
tions such as machine translation [13, 37]. We thus require a language model of trees, and the
subsequences we will represent are subtrees. We thus also require the tree automata minimisation
algorithms presented in this work.
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Figure 4: Trees represented in Example 6.1

6.1 Experiment

We prepared a data set by collecting 3-subtrees, i.e. all subtrees of height 3, from sentences taken
from the Penn Treebank corpus of syntactically bracketed English news text [27]. An initial wta
was constructed by representing each 3-subtree in a single path. Example 6.1 demonstrates how
such initial wtas are constructed.

Example 6.1 Let the (tree, weight) pairs in Figure 6.1 be those we want to represent in a wta.
Then we construct the wta M = (Q,Σ, R, F, µ), where

• Q = {a, b, c, d, e, f, g, h, i, j};

• Σ = Σ(2)∪Σ(1)∪Σ(0) with Σ(2) = {PP}, Σ(1) = {IN, NP-C}, and Σ(0) = {before, NPB, after};

• R = (R, +, ·, 0, 1) is the field of reals;

• F (i) = 0.2, F (j) = 0.4, and F (x) = 0 for every x ∈ Q \ {i, j};

• the only non-zero tree representations are

1 = µ0(before)ε,a = µ0(after)ε,b = µ0(NPB)ε,c = µ0(NPB)ε,d

1 = µ1(IN)a,e = µ1(IN)b,f = µ1(NP-C)c,g = µ1(NP-C)d,h

1 = µ2(PP)eg,i = µ2(PP)fh,j . 2

We then wrote an implementation of the forward and backward variants of Algorithm 1 in Perl and
applied them to wta created from data sets of various sizes of 3-subtrees. Example 6.2 demonstrates
the result of applying the backward algorithm to Example 6.1. In this case, the forward algorithm
would not change the size of the input automaton, but this is of course not true in the general case.

Example 6.2 Let M be the wta described in Example 6.1. Then M ′ = (P, Σ, R, G, ν) is the wta
obtained by applying Algorithm 2 to M where Σ and R are as before and

• P = {a, b, (cd), e, f, (gh), i, j};

• G(i) = 0.2, G(j) = 0.4, and G(x) = 0 for every x ∈ P \ {i, j};

• the only non-zero tree representation entries are

1 = ν0(before)ε,a = ν0(after)ε,b = ν0(NPB)ε,(cd)

1 = ν1(IN)a,e = ν1(IN)b,f = ν1(NP-C)(cd),(gh)

1 = ν2(PP)e(gh),i = ν2(PP)f(gh),j . 2
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As noted in Section 5, automata can be minimised by iteratively running Algorithms 1 and 2
in alternating succession until no changes are observed. However, although the choice of initial
minimisation can affect the end automaton, we found the choice of initial minimisation to not have
a great impact on the final automata in our experiments. In the 31 experimental setups summarised
below in Table 1, only 4 yielded a different automaton depending on the initial minimisation, and
these differences were never more than 2 rules or states off. We thus indicate in Table 1, for each
experiment, the number of states and rules initially, after one iteration of forward minimisation,
after one iteration of backward minimisation, and after convergence, which was generally achieved
after the sequence (backward, forward), equivalent to the sequence (forward, backward, forward).
The differences between the two sequences, if any, were inconsequential.

6.2 Performance

As noted in Section 4.2.3, the time complexity of the forward algorithm for cancellative semi-
rings is O(rm log n) and the complexity for the backward algorithm for cancellative semirings is
O

(

r2m log n
)

. To determine the empirical runtime of our implementation, we constructed several
automata of increasing size and ran both minimisation algorithms on them, noting the time to min-
imise. We summarise the empirical runtimes observed in our experiment in Figure 5 by plotting
the appropriate dependency (i.e. rm log n for forward and r2m log n for backward) vs. the time and
fitting the curve axb to the plot, then determining the value of b. As the figure shows, the observed
time exceeds the ideal time. This is due to the invalidity of the perfect hash assumption described
in Section 3.2.2.

Acknowledgements: The authors truly appreciate the help of Lisa Kaati, who provided excellent
references and test data for our implementation. Further we would like to thank Frank Drewes
for proof-reading the manuscript and suggesting numerous improvements and Kevin Knight for
suggestions regarding the implementation section. The remaining errors and imperfections are
solely our fault.
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trees original forward backward convergence

states rules states rules states rules states rules

5 23 23 18 22 21 21 16 20

15 88 88 74 87 70 70 56 69

25 162 162 141 161 136 136 115 135

35 246 246 210 243 191 191 155 188

45 295 295 248 290 209 209 161 203

55 357 357 304 353 244 244 189 238

65 424 424 365 421 303 303 242 298

75 507 507 431 501 340 340 259 329

85 526 526 436 516 365 365 271 351

95 614 614 518 603 430 430 331 416

105 707 707 598 694 475 475 361 457

115 708 708 571 679 484 484 343 451

125 803 803 670 788 526 526 380 498

135 843 843 699 822 553 553 403 526

145 915 915 759 893 594 594 415 549

155 1000 1000 834 979 631 631 455 600

165 1087 1087 899 1054 672 672 468 623

175 1118 1118 924 1089 689 689 474 639

185 1189 1189 984 1157 772 772 542 715

195 1238 1238 1025 1210 768 768 522 707

205 1366 1366 1130 1324 840 840 575 769

215 1349 1349 1094 1304 834 834 549 759

225 1470 1470 1219 1432 910 910 628 841

235 1448 1448 1186 1410 867 867 567 791

245 1593 1593 1312 1546 947 947 637 871

255 1621 1621 1328 1567 935 935 605 844

265 1694 1694 1400 1650 983 983 652 902

275 1738 1738 1419 1682 1039 1039 687 950

285 1838 1838 1513 1786 1056 1056 690 963

295 1922 1922 1594 1876 1116 1116 748 1030

305 1996 1996 1630 1924 1143 1143 735 1029

Table 1: Reduction of states and rules by using the bisimulation minimisation algorithms

36



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000

tim
e 

(s
)

log(states)*rules*maxrank

time of forward minimisation vs (log(states)*rules*maxrank)

observed time
x^2.75

(a) Forward minimisation timing statistics

 0

 50

 100

 150

 200

 250

 300

 0  50000  100000  150000  200000  250000  300000

tim
e 

(s
)

log(states)*rules*maxrank2

time of backward minimisation vs (log(states)*rules*maxrank2)

observed time
x^2.28

(b) Backward minimisation timing statistics
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